第25回 中部地盤工学シンポジウム論文集

## 平成25年8月9日(金)

主催:社団法人 地盤工学会 中部支部

後援:(社)建設コンサルタンツ協会中部支部

(社) 日本建設業連合会中部支部

中部地質調査業協会

## 目 次

第1セッション(9:35~12:00)
 地震防災(津波・液状化など)
 司会 名古屋工業大学 Md. Shahin Hossain

- 1-1 東日本大震災における液状化の確率論的評価に関する基礎的研究
   1

   徳島大学
   鈴木 壽
- 1-2 振動台実験を用いた抗基礎の耐震補強効果の検証および数値解析
   7

   名古屋工業大学
   岡 良亮、三井 翔平、森河 由紀弘、張 峰

- 1-4 低拘束圧における豊浦砂の力学挙動の実験的研究
   17

   名古屋工業大学
   長田 辰弥、加藤 守人、森河 由紀弘、張 峰
- 1-5 不飽和土構造物の施工時・地震時・地震後の空気~水~土骨格連成有限変形シミュレーション......23

   名古屋大学

   吉川 高広、野田 利弘

特別講演その1 「巨大化する想定地震~どこまで対応できるのか~」

岐阜大学・杉戸真太 教授

第2セッション(13:00~15:00) 地震以外の自然災害(ゲリラ豪雨・洪水など) 司会 名古屋大学 山田 正太郎

2-1 豪雨特性と間隙空気の影響を考慮した河川堤防の飽和・不飽和浸透挙動とモニタリング手法.....41 名古屋工業大学 齊藤 啓、伊藤 嘉、今瀬 達也、前田 健一 中部大学 杉井 俊夫 応用地質㈱ 小林 剛

| ㈱建設技術研究所   | 李 圭太  |
|------------|-------|
| (財)建設技術研究所 | 榎本 文勇 |

 2-5 浸透破壊を対象とした進行性メカニズムの評価に関する研究
 69

 中部大学
 梅基 哲矢、杉井 俊夫、山田 公夫

 中日本航空㈱
 名倉 晋

特別講演その2 「自然災害と初期支援」

中部地方整備局 五十川俊一 氏

第3セッション(15:10~17:15) 維持管理・環境・その他 司会 名古屋大学 檜尾 正也

| 3-1 | 無導坑方式・早期閉合による超 | 近接双設トンネルの施工時挙動評価        | 3 |
|-----|----------------|-------------------------|---|
|     | 中日本高速道路(㈱)     | 稲垣 太浩、中堀 千嘉子            |   |
|     | 清水建設㈱          | 矢野 一郎、牛田 和仁、髙本 絢也、奥野 哲夫 |   |

 3-3 ジオシンセティックスを用いた構造物基礎の補強効果
 95

 名古屋工業大学
 増田 彩希、Hossain Md.Shahin

 東京工業大学
 竹田 智哉

 Tij 地盤解析研究所
 中井 照夫

3-4 土を用いた落石対策インフラの長寿命化に関する個別要素法解析......101
 名古屋工業大学 内藤 直人、今瀬 達也、前田 健一
 土木研究所寒地土木研究所 山口 悟
 構研エンジニアリング 牛渡 裕二、鈴木 健太郎、川瀬 良司

| 凡朱コンクリート上美術 | 伊膝 | 啓介 |
|-------------|----|----|
| 豊橋技術科学大学    | 臼井 | 秀行 |
| ㈱遠藤造林       | 遠藤 | 一美 |
| 西濃建設㈱       | 宗宮 | 正和 |
| (㈱エスウッド     | 角田 | 惇  |
|             | 河村 | 邦基 |

#### 特別講演その3「徳山水力発電所建設工事の技術課題と対応」

中部電力㈱ 浦上博行 氏

# 第1セッション (9:35~12:00)

## 地震防災 (津波・液状化など)

# 司 会 Md. Shahin Hossain (名古屋工業大学)

東日本大震災における液状化の確率論的評価に関する基礎的研究

#### 鈴木 壽1

1 徳島大学・大学院・E-mail address suzuki@ce.tokushima-u.ac.jp

#### 概 要

一般に土質定数はかなりばらつき,適切な強度定数を決めることは容易ではなく,液状化に対する地盤の 抵抗値は確率変数であると考えるのが順当である。一方,地震外力も発生自体,震源特性,伝播経路特性 すべてが確率論的である。すなわち,液状化を含めたすべての土木工学の耐震工学では確率論の導入が不 可欠であると考えられる。ここに掲げている問題は非常に大きいので,課題を三陸沖で過去 89 年間に起き た地震ハザード曲線と,東日本大震災で生じた液状化被害例の統計的な処理から求めた計測震度と液状化 率の関係を表すフラジリティ曲線を求めることに絞る。ここで得られたハザード曲線,液状化率曲線など は架空のものではなく実際の被害を実物大実験と見なして統計処理したものである。この研究の位置づけ は東日本大震災で生じた貴重な液状化被害事例の記録を有効に活用したものである。この結果は,以後の 液状化被害に対する有益な情報を与えるものと信じる。つまり本研究で得た知見は同規模の地震の発生が 予想される南海地震の対策にも当然役立つと考える。

キーワード:地震ハザード曲線,液状化安全率,フラジリティ曲線,液状化率

#### 1. はじめに

我々は 2011 年 3 月 11 日に忘れえぬ大地震を経験した。 2013 年 1 月 30 日現在,死者 15880 人,行方不明 2700 人で合わせて 18580 人の尊い命が犠牲となった。被害が これほどまでに甚大になった理由は,いくつか考えられる が最大の理由は,この地震が想定外の大規模な地震であっ たことにある。

今後,我々土木技術者は,この想定外の地震に耐えうる 社会基盤を構築せねばならない。しかし,公共事業に投与 される予算には限りがあり無限大に強固な構造物を作る ことはできない。さらに地震は,いつ起こるかわからない という確率論的な問題でもある。地震予知などという問題 は地震学者でもない私たちにとっても容易に分かるはず がない。こうした不確実性の中で土木構造物は設計されね ばならない。すなわち想定すべき最大級の地震に対して限 られた予算に対する最適設定を実施する必要がある。本研 究ではこうした社会的な背景に基づいて,地盤工学の中で も極めて被害の大きかった液状化問題を取り上げ,その東 日本大震災における地震ハザード曲線とフラジリティ曲 線を求め,確率・統計的なアプローチを示す。ここで,示 すデータはマグニチュードM9で,南海・東南海地震にも 十分援用できる。

#### 2. 東日本大震災の液状化被害

ここでは,東日本大震災で実際に起きた液状化の被害を 簡単に説明していく。

#### 2.1 道路のひび割れ

写真 - 1 は液状化によ る舗装道路のひび割れを 示している。進行方向に かなり幅の広いひびがか なり遠くまで続いている 様子が分かる。こうした ひび割れが発生すると, 道路は通行止めとなり交 通障害が発生し物流への 影響も甚大である。東日 本大震災ではこのような

道路のひび割れが随所に見られた。



写真-1 道路のひび割れ

道路に関してはその他, 噴砂, マンホールの浮き上がり などが液状化被として顕著に現れた。また液状化によって 地盤と道路面の側方流動が何メートルも発生し道路の分 断が起こっている場合もあり, 交通は遮断されねばならな かった。最後に砂地盤にかけられる橋梁の基礎は通常杭基 礎が多いが地震により橋梁の基礎地盤が液状化すると杭 基礎を支えていた横方向の抵抗が無くなり基礎が大きく 変形し大規模な側方流動が周辺地盤で発生した。

#### 2.2 家屋の傾斜

写真 - 2 は典型的な家屋の傾斜を示している。これは地 盤が液状化によって不均一に弱くなった結果生じたもの である。写真 - 2 には現れていないが家屋周りには多くの 埋設管がありそれらにも少なからず影響が与えられてい ると考えられる。 また,写真-2 は典型的な家屋の傾斜を示している。これは地盤が液状化によって不均一に弱くなった結果生じたものである。写真-2 には現れていないが家屋周りには多くの埋設管がありそれらにも少なからず影響が与



えられていると考えられる。 写真-2 家屋の傾斜

#### 3. 液状化の予測法

#### 3.1 液状化安全率 F \_ <sup>1)</sup>

液状化安全率  $F_L$ (Factor of safety for liquefaction)は、地盤の液状化に対する抵抗力Rを地震によるせん断応力Lで除した値である。

$$F_{L} =$$
   
  
  
彼 次 化 抵 抗 刀 R  
  
せん 断 応 力 L

 $F_L$ 値は,  $F_L=1$ を境に $F_L<1$ の場合には液状化の発生する可能性が高く,  $F_L \ge 1$ では液状化の発生する可能性が低いと判断される。

液状化安全率  $F_L$ を得るために必要な液状化抵抗比 R とせん断応力比 L は、さまざまな手法によって求めること ができる。

〈液状化抵抗比 R〉

地盤の液状化に対する強さであり,標準貫入試験より得 られた N 値と粒度試験結果から推定する手法や土質試験 で実際に土を振動させる方法などがあり,目的・精度に応 じて選択する。しかし,調査できる範囲は狭く,一般にN 値などはかなりばらつき確定値とするのは難しい。

〈せん断応力比L〉

地震によって地盤に伝わる強さを示し, 簡便法として地 盤の有効土被り圧 p'z と加速度の関係式や, 地震応答解析 により算出する方法など, こちらも必要な精度に応じて選 択するが, 地震外力も発生自体, 震源特性, 伝播経路特性 すべてが確率論的であるから液状化抵抗比以上に確定論 的にするわけにはいかない。

#### 3.2 シミュレーションによる液状化予測

ここでの動的解析は、地震時に発生する過剰間隙水圧の 上昇、すなわち有効応力の低下による強度や変形係数の変 化を考慮した応答解析とし、一般にはこれらの解析法は有 効応力解析と称されている。有効応力解析には、種々な手 法が提案されている。それらは、土の構成モデル(構成則) よって特徴づけられる。有効応力解析が主流であり、地震 時の地盤内のひずみ、加速度応答、過剰間隙水圧の発生・ 消散などの時々刻々の変化が求められ、液状化時から液状 化後までの詳細なシミュレーションが可能である。LIQA, FILP などが代表的な解析法であるが、非常に数多くのパ ラメータを入力する必要があり,パラメータの設定や結果 の評価には,高い技術と経験を要する。

#### 4. 東日本大震災の地震発生位置と規模

3 で述べた既往の研究では土質力学に立脚した点及び面的 な領域の安定性を確定論手的に論じていた。しかし,地震 は確率的に発生しており,3次元的に広がり大きな被害を 与える。すなわち,既往の研究のような,ほんの小領域の 理論で液状化を議論するのではなく,大規模かつ確率論的 に評価するのが液状化問題の本来の姿である。

#### 4.1 三陸沖の地震発生位置と規模<sup>2-4)</sup>

今回の東日本大震災は三陸沖を震源とするマグニチュ ード9の地震で起こった。そこで、最初に三陸沖の面的な 定義を行う。すなわち、西経 141 度、東経 144 度、南緯 36 度、北緯 42 度の範囲で震源の深さは上限を 0.0 km、下 限を 50 kmとする。これを地図に表したものが図-1 である。 図中の丸印は東日本大震災で発生した地震の震源地であ る。



図-1 三陸沖の研究対象領域

次ページにあるが、図-2は、1923年1月8日~2012年 12月16日までに三陸沖で起きた地震を示している。本研 究では液状化を問題にしているので、マグニチュード5以 上の地震を対象とした。表-1は、各マグニチュード以上の 地震発生個数を示している。表から分かるようにマグニチ ュード5~6が最も多くマグニチュード6以上になると激 減し7~9となると、ほんのまれにしか起こらないことが 分かる。勿論、このマグニチュード発生個数は図-2で示し た三陸沖に限定して調査したものである。

#### 表-1マグニチュードと発生個数の関係(1923-2012)

| マグニチュード | 発生個数 |
|---------|------|
| 5 以上    | 2250 |
| 6以上     | 350  |
| 7 以上    | 24   |
| 8以上     | 1    |
| 9以上     | 1    |



図-2 1923 年 1 月 8 日~2012 年 12 月 16 日までに三陸沖で起 きた地震

#### 5. 液状化の統計的解析

#### 5.1 液状化率の定義

右図は表-2 で示す江東 区1の液状化被害の様子 を示している。赤色の区域 は液状化した区域 a で,そ の他の部分は液状化して ない区域で,区域全面積A とすると液状化率F<sub>R</sub>は



## $F_{R} = a / A \times 100(\%)$

#### 5.2 解析に用いた被害例

表一2 液状化被害の一覧表(解析に用いた地点,項目のみ)

| 区域    | 液状化被害面積(km <sup>2</sup> ) | 区域全面積(km <sup>2</sup> ) | 液状化率 | 計測震度 | 履歴 |
|-------|---------------------------|-------------------------|------|------|----|
| 江東区 1 | 1.46                      | 2.54                    | 57.5 | 5.5  | なし |
| 江東区 2 | 0.36                      | 1.58                    | 22.8 | 5.5  | なし |
| 江東区 3 | 0.056                     | 4.49                    | 1.2  | 5.5  | あり |
| 江東区 4 | 0.032                     | 1.95                    | 1.6  | 5.5  | あり |
| 江東区 5 | 0.058                     | 5.01                    | 1.2  | 5.5  | あり |
| 江東区 6 | 0.045                     | 3.11                    | 1.4  | 5.5  | あり |
| 江東区 7 | 0.00173                   | 1.9                     | 0.1  | 5.5  | なし |
| 合計    | 2.01273                   | 20.58                   | 9.8  |      |    |

| D 程(km <sup>2</sup> )<br>1.26<br>0.988<br>1<br>1.627<br>2.403<br>1.918<br>0.00172<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>0.231<br>0.0231<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055<br>0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 区域金面積(km <sup>2</sup> )<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5)<br>(2,5) | 次伏化率<br>液伏化率<br>液伏化率<br>液伏化率<br>液伏化率<br>液伏化率                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35.1<br>95.0<br>42.6<br>67.5<br>78.5<br>88.0<br>0.0<br>44.9<br>99.5<br>96.8<br>1.5<br>49.6<br>15.2<br>97.0<br>99.3<br>43.0<br>43.0<br>43.0<br>99.3<br>12.8<br>25.2<br>99.3<br>92.9<br>14.9                                                                                                                                                                                                            | 11:3(素)(5,5) 5,5) 5,5) 5,5) 5,5) 5,5) 5,5) 5,5) 5,5) 5,5) 5,5) 5,5) 5,5) 5,5) 5,5) 5,5) 5,5) 5,5) 5,5) 5,5) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 6,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6) 7,6)< | 70 位<br>なし<br>なし<br>なし<br>あり<br>あり<br>あり<br>あり<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>の<br>あり<br>あり<br>あり<br>あり<br>あり<br>あり<br>の<br>の<br>り<br>の<br>の<br>り<br>の<br>の<br>し                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.20           0.988           1           1.627           2.403           1.918           0.00172           9.19772           2.403           0.00172           9.19772           0.00172           9.19772           0.00172           9.19772           0.033           0.043           0.033           0.64           0.65           1.56           1.56           1.55           1.66           5.595           5.954           1.65           1.65           1.65           1.65           1.65           1.65           1.65           1.65           1.65           1.65           1.65           1.65           1.65           1.65           1.75           1.65           1.65           1.75           1.65           1.65           1.75           1.75           1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.93       1.04       2.33       2.41       3.04       2.15       5.84       2.047       医球金面積(km <sup>*</sup> )       2.0       2.0       3.02       2.03       3.01       2.01       1.12       4.11       1.6       1.5       1.6.1       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       2.5       2.5       2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 波伏化率           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5 <td>35.1<br/>95.0<br/>42.6<br/>67.5<br/>78.5<br/>88.0<br/>0.0<br/>44.9<br/>99.5<br/>96.8<br/>49.6<br/>99.3<br/>43.0<br/>99.3<br/>43.0<br/>99.3<br/>43.0<br/>99.3<br/>43.0</td> <td>3.3<br/>5.5<br/>5.5<br/>5.5<br/>5.5<br/>5.5<br/>5.5<br/>5.5</td> <td>なし、なし、なし、なし、ありり           なり、ありり           あり           なし、なし、なし、なし、なし、なし、なし、なし、なし、なし、なし、なし、なし、な</td>                                                                                                                                                                                                                                                                                              | 35.1<br>95.0<br>42.6<br>67.5<br>78.5<br>88.0<br>0.0<br>44.9<br>99.5<br>96.8<br>49.6<br>99.3<br>43.0<br>99.3<br>43.0<br>99.3<br>43.0<br>99.3<br>43.0                                                                                                                                                                                                                                                   | 3.3<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | なし、なし、なし、なし、ありり           なり、ありり           あり           なし、なし、なし、なし、なし、なし、なし、なし、なし、なし、なし、なし、なし、な                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.988<br>1.988<br>1.627<br>2.403<br>1.918<br>0.00172<br>0.231<br>0.231<br>0.231<br>0.033<br>0.045<br>0.64<br>0.65<br>1.55<br>6.954<br>1.55<br>6.954<br>1.55<br>6.954<br>1.55<br>6.954<br>1.55<br>6.955<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>6.954<br>1.55<br>6.954<br>1.55<br>6.954<br>1.55<br>6.955<br>1.65<br>1.65<br>1.65<br>6.954<br>1.55<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.955<br>1.65<br>6.336<br>6.336<br>6.336<br>6.336<br>6.335<br>6.336<br>6.336<br>6.336<br>6.336<br>6.336<br>6.336<br>6.336<br>6.355<br>6.355<br>6.356<br>6.336<br>6.336<br>6.336<br>6.336<br>6.355<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356<br>6.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 104       235       241       300       216       5.84       20.47       國城金面積(km <sup>2</sup> )       300       2.0       3.0       2.11       1.2       4.11       1.6       1.5       16.17       33.8       図域金面積(km <sup>2</sup> )       1.5       1.5       1.5       1.1.5       33.8       図域金面積(km <sup>2</sup> )       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.5       1.6       1.4       1.0       2.5       8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95.0<br>42.6<br>67.5<br>78.5<br>88.0<br>0.0<br>44.9<br>99.5<br>96.8<br>1.5<br>99.5<br>96.8<br>1.5<br>99.3<br>43.0<br>99.3<br>43.0<br>47.5<br>10.9<br>12.8<br>25.2<br>99.3<br>92.9<br>14.9                                                                                                                                                                                                             | 5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | なし<br>なし<br>あり<br>あり<br>あり<br>あり<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>の<br>あり<br>の<br>の<br>り<br>の<br>の<br>り<br>の<br>の<br>り<br>の<br>の<br>り<br>の<br>の<br>り<br>の<br>の<br>り<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の                                                                                                                                                                                                                                                                                                                                        |
| 1<br>1.627<br>2.403<br>1.918<br>0.00172<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.19772<br>9.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 238           2.41           3.00           2.11           5.84           2.0.47           医域全面積(km <sup>2</sup> )           2.11           2.12           4.11           1.6.1           1.5           1.6.1           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.4           1.0           2.5 <t< td=""><td>液状化率           3           3           3           3           3           3           3           3           3           3           3           3           3           3           3           3           4           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5<td>42.6<br/>67.5<br/>78.5<br/>88.0<br/>0.0<br/>44.9<br/>99.5<br/>96.8<br/>1.5<br/>99.5<br/>99.5<br/>99.5<br/>99.5<br/>99.5<br/>99.5<br/>99.5</td><td>5.5<br/>5.5<br/>5.5<br/>5.5<br/>5.5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5</td><td>なし         なし           あり         あり           あり         あり           なし         なし           なし         なし</td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 液状化率           3           3           3           3           3           3           3           3           3           3           3           3           3           3           3           3           4           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5 <td>42.6<br/>67.5<br/>78.5<br/>88.0<br/>0.0<br/>44.9<br/>99.5<br/>96.8<br/>1.5<br/>99.5<br/>99.5<br/>99.5<br/>99.5<br/>99.5<br/>99.5<br/>99.5</td> <td>5.5<br/>5.5<br/>5.5<br/>5.5<br/>5.5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5</td> <td>なし         なし           あり         あり           あり         あり           なし         なし           なし         なし</td> | 42.6<br>67.5<br>78.5<br>88.0<br>0.0<br>44.9<br>99.5<br>96.8<br>1.5<br>99.5<br>99.5<br>99.5<br>99.5<br>99.5<br>99.5<br>99.5                                                                                                                                                                                                                                                                            | 5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | なし         なし           あり         あり           あり         あり           なし         なし                                                                                                                                                                                                                                                  |
| 1.627<br>2.403<br>1.918<br>0.00172<br>9.19772<br>5.403<br>0.231<br>0.231<br>0.231<br>0.033<br>0.04<br>0.64<br>0.65<br>1.55<br>6.954<br>1.55<br>1.55<br>1.55<br>1.05<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>5.954<br>1.55<br>5.954<br>1.55<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.65<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>1.55<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5.955<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.41         3.00           2.16         5.84           5.84         20.47           國域金面積(km <sup>2</sup> )         3.00           2.0         3.00           3.0         2.0           3.0         2.0           3.0         2.0           3.0         2.0           3.0         2.0           1.1         1.2           1.1.1         1.6           1.5         16.1           1.5         1.5           1.1.5         3.3.8           区域金面積(km <sup>2</sup> )         1.5           1.5         1.5           1.5         1.5           1.5         1.5           1.4         1.0           0.2.55         8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·   ·   ·   ·   ·   ·   ·   ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67.5<br>78.5<br>88.0<br>0.0<br>44.9<br>99.5<br>96.8<br>1.5<br>49.6<br>15.2<br>97.0<br>99.3<br>43.0<br>47.5<br>10.9<br>91.3<br>43.0<br>47.5<br>10.9<br>92.3<br>12.8<br>25.2                                                                                                                                                                                                                            | 5.5.<br>5.5.<br>5.5.<br>5.5<br>5.5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | なし<br>あり<br>あり<br>あり<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2,403<br>1,918<br>0,00172<br>9,19772<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.00<br>2.16<br>5.84<br>20.47<br>区域全面積(km <sup>2</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 液状化率<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78.5<br>88.0<br>0.0<br>44.9<br>99.5<br>96.8<br>1.5<br>97.0<br>99.3<br>43.0<br>47.5<br>10.9<br>12.8<br>25.2<br>99.3<br>43.0                                                                                                                                                                                                                                                                            | 5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5           5.5      5.5                                                                                                                                                                 | あり<br>あり<br>あり<br>あり<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.918<br>1.918<br>0.00172<br>9.19772<br>0.231<br>0.231<br>0.231<br>0.033<br>0.033<br>0.04<br>0.65<br>1.55<br>6.954<br>1.55<br>1.55<br>1.55<br>1.65<br>1.55<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.16           5.84           20.47           3.00           2.0.30           3.01           2.0.47           3.01           2.0.47           3.01           2.0.47           3.01           3.01           3.01           1.11           1.12           3.11           1.15           1.6.17           0.61           1.15           3.3.8           区域金面積(km <sup>2</sup> )           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 液状化率       5       6       7       8       7       8       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88.0<br>0.0<br>44.9<br>99.5<br>99.5<br>96.8<br>49.6<br>15.2<br>97.0<br>99.3<br>43.0<br>47.5<br>10.9<br>99.3<br>25.2                                                                                                                                                                                                                                                                                   | 5.5           5.5           5.5           5           5           5           5           5           5           5           5           5           5           6           6           6           6           6           6           6           5           5           5           5           5           6           6           6           6           6           6           6           6           6           6           6           6           6           6           6           6           7           7                                                                                                                                                                                                                                                                                                                                                            | あり<br>あり<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.00172<br>9.19772<br>9.19772<br>5種(km <sup>2</sup> )<br>0.231<br>0.231<br>0.033<br>0.64<br>0.65<br>1.55<br>1.55<br>1.55<br>1.55<br>1.65<br>1.55<br>1.65<br>1.55<br>1.65<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 584           20.47           20.43           20.43           300           200           0.30           20.01           20.01           20.01           20.01           20.01           20.01           20.01           20.01           20.01           20.01           20.01           1.1           1.1.5           1.1.5           1.1.5           1.1.5           1.1.5           1.1.5           1.1.5           1.1.5           1.1.5           1.1.5           1.1.5           1.1.5           1.1.5           1.1.5           1.1.4           1.0.0           2.55           2.60           2.61           2.61           2.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液状化率<br>液                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0<br>44.9<br>99.5<br>96.8<br>1.5<br>49.6<br>97.0<br>99.3<br>43.0<br>47.5<br>10.9<br>12.8<br>25.2<br>99.3<br>92.9<br>14.9                                                                                                                                                                                                                                                                            | 5.5<br>計測雲度<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | あり<br>酸歴<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9.19772<br>回转(km <sup>2</sup> )<br>0.231<br>0.231<br>0.032<br>0.04<br>0.65<br>1.55<br>6.955<br>1.65<br>1.55<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>1.65<br>5.66<br>5.66<br>1.65<br>1.65<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66<br>5.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.47           区域全面積(km²)           300           2.0           301           2.0           3.2           4.1           1.2           4.1           1.5           16.1           2.4           9.6%           1.15.9           33.8           区域全面積(km²)           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.4           1.0           2.5           2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 液状化率           3           4           5           5           6           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5           5 <td>44.9<br/>7.6<br/>99.5<br/>96.8<br/>1.5<br/>49.6<br/>97.0<br/>99.3<br/>43.0<br/>47.5<br/>10.9<br/>12.8<br/>25.2<br/>99.3<br/>92.9<br/>14.9</td> <td>計測震度<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5<br/>5</td> <td>限歴<br/>なし<br/>なし<br/>なし<br/>なし<br/>なし<br/>なし<br/>なし<br/>なし<br/>なし<br/>なし<br/>なし<br/>なし<br/>なし</td>                                                                                                                                                                                                                                                                  | 44.9<br>7.6<br>99.5<br>96.8<br>1.5<br>49.6<br>97.0<br>99.3<br>43.0<br>47.5<br>10.9<br>12.8<br>25.2<br>99.3<br>92.9<br>14.9                                                                                                                                                                                                                                                                            | 計測震度<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 限歴<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 五桂 (km²)         0.231           0.233         0.033           0.033         0.64           0.55         1.55           1.5         6.954           百積 (km²)         1.05           1.05         1.05           1.05         1.05           1.05         1.05           1.05         1.05           1.05         1.05           1.05         1.05           1.05         1.05           1.05         1.05           1.05         1.05           1.05         1.05           1.05         0.82           0.044         2.55           0.034         0.044           0.044         2.55           0.336         5.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 区域全面積(km <sup>2</sup> )<br>2.0<br>2.0<br>0.3<br>2.1<br>1.1<br>1.2<br>4.1<br>1.5<br>16.1<br>区域全面積(km <sup>2</sup> )<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 液状化率           液状化率           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適           適                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.6<br>99.5<br>96.8<br>1.5<br>49.6<br>15.2<br>97.0<br>99.3<br>43.0<br>43.0<br>47.5<br>10.9<br>12.8<br>25.2<br>99.3<br>92.9<br>14.9                                                                                                                                                                                                                                                                    | 計測雲度<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 酸 歴<br>なし、<br>なし、<br>なし、<br>なし、<br>なし、<br>なし、<br>なし、<br>なし、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| □ 转 (km <sup>2</sup> )<br>0.231<br>0.231<br>0.63<br>0.63<br>0.64<br>0.65<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 区域全面積(km <sup>2</sup> )<br>3.00<br>2.00<br>3.03<br>3.03<br>3.03<br>3.03<br>1.12<br>4.11<br>1.12<br>4.11<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.6<br>99.5<br>96.8<br>1.5<br>49.6<br>15.2<br>97.0<br>99.3<br>43.0<br>47.5<br>10.9<br>12.8<br>25.2<br>99.3<br>92.9<br>14.9                                                                                                                                                                                                                                                                            | 計測震度<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 度歴<br>なし、<br>なし、<br>なし、<br>なし、<br>なし、<br>なし、<br>なし、<br>なし、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.231<br>2.050<br>0.35<br>0.04<br>0.055<br>1.55<br>6.954<br><u>0.65</u><br>1.55<br>6.954<br><u>0.65</u><br>1.05<br>1.65<br>1.55<br>8.51<br>1.55<br>8.51<br>1.55<br>1.44<br><u>0.65</u><br>1.55<br>8.51<br>1.55<br>1.65<br>1.55<br>5.95<br>1.65<br>1.55<br>5.95<br>1.65<br>1.55<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>1.65<br>5.95<br>5.95<br>5.95<br>5.95<br>5.95<br>5.95<br>5.95<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.00           2.0.           0.3.           2.11           1.21           1.12           1.12           1.15           16.17           15.1           16.17           2.11           1.5           16.17           2.18           1.15           1.15           1.15           1.15           1.15           1.15           1.15           1.15           1.15           1.15           1.15           1.1           0.6           1.4           1.0           2.55           2.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5<br>4<br>3<br>3<br>次状化率<br>5<br>3<br>次状化率<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.6<br>99.5<br>96.8<br>1.5<br>49.6<br>97.0<br>99.3<br>43.0<br>47.5<br>10.9<br>12.8<br>25.2<br>99.3<br>99.3<br>99.3<br>92.9<br>14.9                                                                                                                                                                                                                                                                    | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>な                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.05<br>0.33<br>0.033<br>0.64<br>0.65<br>1.55<br>1.55<br>6.954<br>5.96<br>1.05<br>1.6<br>5.96<br>1.05<br>1.6<br>5.96<br>1.05<br>1.6<br>5.96<br>1.05<br>1.6<br>5.96<br>1.05<br>1.6<br>5.96<br>1.05<br>1.6<br>5.96<br>1.05<br>1.6<br>5.96<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.0.           0.3           2.11           1.2.11           1.2.11           1.2.11           1.1.11           1.6.11           1.5.11           1.5.11.51           1.5.11.51           1.5.11.51           1.5.11.51           1.5.11.51           1.5.11.51           1.5.11.51           1.5.11.51           1.5.11.51           1.5.11.51           1.5.11.51           1.5.11.51           1.5.11.51           1.5.11.51           1.5.11.51           1.5.11.51           1.5.11.51           1.5.11.51           1.5.11.51           1.5.11.51           1.5.11.51           1.5.11.51           1.5.11.51           1.5.11.51           1.5.11.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 波快化率           波快化率           波快化率           波快化率           2           2           3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99.5<br>96.8<br>1.5<br>49.6<br>15.2<br>97.0<br>99.3<br>43.0<br>47.5<br>10.9<br>12.8<br>25.2<br>99.3<br>99.3<br>92.9<br>14.9                                                                                                                                                                                                                                                                           | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>な                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.3<br>0.033<br>0.64<br>0.65<br>1.55<br>6.954<br><u>0.65</u><br>1.5<br><u>6.954</u><br><u>0.954</u><br><u>1.5</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u><br><u>1.65</u> <u></u> | 0.3         2.11           1.2.1         1.21           1.1.1         1.6.1           1.5.5         16.1           夏ば麦金面積(km <sup>2</sup> )         12.1           9.66         11.5           1.1.5         16.1           夏ば麦金面積(km <sup>2</sup> )         12.1           9.66         11.5           1.1.5         15.5           1.1.0         1.5           1.1.4         1.0.0           1.1.4         1.0.0           2.55         8.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 液状化率           液状化率           液状化率           液状化率                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 96.8<br>1.5<br>49.6<br>15.2<br>97.0<br>99.3<br>43.0<br>47.5<br>10.9<br>12.8<br>25.2<br>99.3<br>92.9<br>14.9                                                                                                                                                                                                                                                                                           | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>あり<br>あり<br>あり                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.033<br>0.04<br>0.64<br>0.63<br>1.55<br>1.95<br>6.954<br>0.954<br>0.954<br>1.05<br>1.44<br>8.51<br>1.5<br>1.5<br>1.5<br>1.5<br>1.6<br>1.5<br>1.5<br>1.6<br>1.5<br>1.5<br>1.6<br>1.5<br>1.5<br>1.5<br>5.9<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.11           1.21           1.12           4.11           1.6.1           15.1           16.1           17.1           12.4           11.5           13.1           15.1           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.4           1.0           2.5           2.5           2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 液状化率<br>液状化率<br>液状化率<br>液状化率                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5<br>49.6<br>15.2<br>97.0<br>99.3<br>43.0<br>43.0<br>43.0<br>47.5<br>10.9<br>12.8<br>25.2<br>99.3<br>92.9<br>14.9                                                                                                                                                                                                                                                                                   | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>あり<br>あり<br>あり                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.044<br>0.05<br>0.05<br>1.55<br>1.5<br>5.95<br>1.05<br>1.44<br>8.51<br>0.1<br>0.1<br>0.1<br>0.1<br>0.0<br>2.57<br>0.044<br>0.044<br>0.044<br>0.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L 1.2     1.2     4.1     1.6     1.5     16.1     区域全面積(km <sup>2</sup> )     12.     9.6     11.5     16.1     12.     9.6     11.5     15     1.1     0.6     1.4     1.0     2.55     2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 液状化率           液状化率           滴           滴           滴           滴           滴           滴           滴           滴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 49.6<br>15.2<br>97.0<br>99.3<br>43.0<br>47.5<br>10.9<br>12.8<br>25.2<br>99.3<br>92.9<br>14.9                                                                                                                                                                                                                                                                                                          | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | は<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>あり<br>あり<br>あり<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし<br>なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.0-0<br>0.6:5<br>1.55<br>1.5<br>6.954<br>5.98<br>1.05<br>1.44<br>8.51<br>5.98<br>1.44<br>8.51<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>0.1<br>0.0<br>8<br>5<br>1.6<br>5<br>1.5<br>5<br>8<br>5<br>9<br>5<br>9<br>5<br>9<br>5<br>9<br>5<br>9<br>5<br>9<br>5<br>9<br>5<br>9<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2.1       4.11       1.6.1       1.5.1       1.6.1       1.5.1       1.5.1       1.5.1       1.5.1       1.5.1       1.5.1       1.5.1       1.5.1       1.5.1       1.5.1       1.5.1       1.5.1       1.5.2       1.5.3       1.5.4       1.5.4       1.5.5       1.5.5       1.5.1       1.5.1       1.5.2       1.5.3       1.5.4       1.5.4       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5       1.5.5 <t< td=""><td>液状化率<br/>3<br/>3<br/>次状化率<br/>3<br/>3</td><td>49.0<br/>15.2<br/>97.0<br/>99.3<br/>43.0<br/>43.0<br/>47.5<br/>10.9<br/>12.8<br/>25.2<br/>99.3<br/>92.9<br/>14.9</td><td>3<br/>5<br/>5<br/>5<br/>1<br/>計測震度<br/>6<br/>6<br/>6<br/>6<br/>6<br/>6<br/>6<br/>6<br/>6<br/>6<br/>6<br/>6<br/>6<br/>6<br/>6<br/>6<br/>6<br/>6<br/>6</td><td>なし<br/>なし<br/>なし<br/>なし<br/>なし<br/>あり<br/>あり<br/>の<br/>の<br/>の<br/>の<br/>の<br/>の<br/>の<br/>の<br/>の<br/>の<br/>の<br/>の<br/>の<br/>の<br/>の<br/>の<br/>の</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 液状化率<br>3<br>3<br>次状化率<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49.0<br>15.2<br>97.0<br>99.3<br>43.0<br>43.0<br>47.5<br>10.9<br>12.8<br>25.2<br>99.3<br>92.9<br>14.9                                                                                                                                                                                                                                                                                                  | 3<br>5<br>5<br>5<br>1<br>計測震度<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | なし<br>なし<br>なし<br>なし<br>なし<br>あり<br>あり<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.05<br>1.55<br>6.954<br><u>5.96</u><br>5.96<br>1.05<br><u>1.44</u><br>8.51<br><u>0.1</u><br>0.1<br>0.1<br>0.1<br>0.2<br>5<br>0.044<br>0.044<br>0.044<br>5<br>5.66<br>5<br>1.5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 国域全面積(km <sup>2</sup> )           国域全面積(km <sup>2</sup> )           16.1           16.1           夏ば全面積(km <sup>2</sup> )           16.1           夏ば           12.1           9.6           11.5           15.5           1.1.           1.5           1.5           1.1.0           1.6           1.4           1.0           2.55           8.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 液状化率<br>5<br>5<br>3<br>次状化率<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.2<br>97.0<br>99.3<br>43.0<br>47.5<br>10.9<br>12.8<br>25.2<br>99.3<br>92.9<br>14.9                                                                                                                                                                                                                                                                                                                  | 5<br>5<br>5<br>5<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | なし<br>なし<br>なし<br>なし<br>なし<br>あり<br>あり<br>あり<br>あり                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.55<br>1.55<br>6.954<br><u>6.954</u><br><u>6.954</u><br><u>6.954</u><br><u>1.05</u><br><u>1.05</u><br><u>1.444</u><br><u>8.51</u><br><u>0.144</u><br><u>8.51</u><br><u>0.15</u><br><u>0.336</u><br><u>6.336</u><br><u>5.86</u><br><u>5.96</u><br><u>6.954</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.6.           1.5           1.5           16.1           度域全面積(km <sup>2</sup> )           12.           9.6           11.55           11.55           11.55           11.55           11.51           11.51           11.51           11.51           11.51           11.51           1.5           1.5           1.5           1.5           1.5           1.5           1.4           1.0           2.51           8.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 液状化率<br>3<br>5<br>5<br>次状化率<br>7<br>7<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 97.0<br>99.3<br>43.0<br>47.5<br>10.9<br>12.8<br>25.2<br>99.3<br>92.9<br>14.9                                                                                                                                                                                                                                                                                                                          | 5<br>5<br>5<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | なし<br>なし<br>なし<br>あり<br>あり<br>なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.5<br>6.954<br>百積 (km <sup>2</sup> )<br>5.98<br>1.05<br>1.45<br>8.51<br>1.5<br>1.3<br>0.0.82<br>0.044<br>2.55<br>6.336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5           16.1           16.1           2.5           12.1           9.6           11.5           33.8           区域全面積(km <sup>2</sup> )           1.5           1.5           1.5           1.5           1.5           1.5           1.6           1.4           1.0           2.55           8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 液状化率<br>5<br>5<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.3<br>43.0<br>47.5<br>10.9<br>12.8<br>25.2<br>99.3<br>92.9<br>14.9                                                                                                                                                                                                                                                                                                                                  | 5<br>計測雲度<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | なし<br>履歴<br>なし<br>あり<br>あり<br>あり<br>なし<br>なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6.954<br>百積 (km <sup>2</sup> )<br>5.96<br>1.05<br>1.44<br>8.51<br>五積 (km <sup>2</sup> )<br>1.5<br>6.336<br>5.86<br>5.96<br>5.96<br>6.336<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.96<br>5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 区域全面積(km <sup>2</sup> )<br>12.<br>9.6<br>11.5<br>11.5<br>33.8<br>区域全面積(km <sup>2</sup> )<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7<br>液状化率<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43.0<br>47.5<br>10.9<br>12.8<br>25.2<br>99.3<br>92.9<br>14.9                                                                                                                                                                                                                                                                                                                                          | 計測震度<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>7<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 履歴<br>なし<br>あり<br>あり<br>をし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| □積(km <sup>2</sup> )<br>5.96<br>1.05<br>1.44<br>8.51<br>1.4<br>8.51<br>1.5<br>1.3<br>0.1<br>0.82<br>2.57<br>6.336<br>5.54 (km <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 区域全面積(km <sup>2</sup> )<br>12:1<br>9:6:<br>11.5:<br>33:8<br>区域全面積(km <sup>2</sup> )<br>5<br>1.5<br>1.5<br>1.5<br>1.4<br>1.4<br>1.4<br>1.0<br>2.5:<br>5<br>8.6:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 液状化率<br>液状化率<br>液状化率<br>液状化率<br>4<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47.5<br>10.9<br>12.8<br>25.2<br>99.3<br>92.9<br>14.9                                                                                                                                                                                                                                                                                                                                                  | 計測震度<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 展歴<br>なし<br>あり<br>あり<br>をし<br>なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <u><br/></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 区域全面積(km <sup>2</sup> )<br>12.<br>9.6<br>11.5<br>33.8<br>区域全面積(km <sup>2</sup> )<br>1.5<br>1.<br>1.<br>1.<br>0.6<br>2<br>1.4<br>1.4<br>0.<br>2.5<br>2<br>8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 液状化率<br>  <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47.5<br>10.9<br>12.8<br>25.2<br>99.3<br>92.9<br>14.9                                                                                                                                                                                                                                                                                                                                                  | 計測雲度<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>履歴</b><br>なし<br>あり<br>あり<br>なし<br>なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.98<br>1.05<br>1.48<br>8.51<br><u>1.5</u><br>1.5<br>1.3<br>0.0<br>0.82<br>0.046<br>2.55<br>6.336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.1           9.61           11.50           33.8           区域全面積 (km <sup>2</sup> )           5           1.5           5           1.5           1.5           1.5           1.5           1.5           1.5           1.6           0.6           1.4           1.0           2.55           8.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3<br>5<br>3<br>3<br>7<br>7<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47.5<br>10.9<br>12.8<br>25.2<br>99.3<br>92.9<br>14.9                                                                                                                                                                                                                                                                                                                                                  | 6<br>6<br>6<br>計測震度<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | なし<br>あり<br>あり<br>なし<br>なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.05<br>1.44<br>8.51<br>1.5<br>1.3<br>0.1<br>0.8<br><u>2</u><br>0.046<br>2.55<br>6.336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.6(4)           11.5(1)           33.8           区域全面積 (km²)           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.5           1.6           1.7           1.0           1.0           1.0           2.51           8.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>5<br>7<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.9<br>12.8<br>25.2<br>99.3<br>92.9<br>14.9                                                                                                                                                                                                                                                                                                                                                          | 6<br>6<br>計測雲度<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | あり<br>あり<br>の<br>履歴<br>なし<br>なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.48<br>8.51<br>1.5<br>1.3<br>0.1<br>0.82<br>0.04<br>2.55<br>6.336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.50       33.8       区域全面積 (km²)       5     1.5       5     1.5       6     1.4       0.6     1.44       1.00     2.55       5     8.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | §<br>液状化率<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.8<br>25.2<br>99.3<br>92.9<br>14.9                                                                                                                                                                                                                                                                                                                                                                  | 6<br>計測震度<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | あり<br><u> </u><br><u><br/></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8.51<br><b></b> 5<br>1.5<br>1.3<br>0.1<br>0.82<br>0.046<br>2.57<br>6.336<br>五種 (km <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.0     33.8       区域全面積 (km²)     1.5       3     1.5       3     1.4       0.6     1.4       1     1.0       2     1.4       3     1.0       3     1.0       3     1.0       3     1.0       3     1.0       3     1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 液状化率<br>1<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.3<br>92.9<br>14.9                                                                                                                                                                                                                                                                                                                                                                                  | 。<br>計測震度<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 展歴<br>なし<br>なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.31<br>面積(km <sup>2</sup> )<br>1.5<br>1.3<br>0.1<br>0.82<br>0.046<br>2.57<br>6.336<br>面積(km <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 支域全面積 (km <sup>2</sup> )           5           5           6           7           7           8           9           1,1           0,6'           1,4           1,0           1,1           1,0           2,5!           8,6!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 液状化率<br>1<br>4<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.3<br>92.9<br>14.9                                                                                                                                                                                                                                                                                                                                                                                  | 計測震度<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 履歴<br>なし<br>なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 区域全面積(km <sup>2</sup> )<br>1.5<br>1.4<br>0.6 <sup>6</sup><br>1.44<br>1.0<br>2.55<br>8.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 液状化率<br> <br>4<br> <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99.3<br>92.9<br>14.9                                                                                                                                                                                                                                                                                                                                                                                  | 計測震度<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 履歴<br>なし<br>なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.5<br>1.3<br>0.1<br>0.82<br>0.046<br>2.57<br>6.336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 1.5<br>1.4<br>0.6<br>1.4<br>1.4<br>1.4<br>5 1.0<br>2.5<br>8 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.3<br>92.9<br>14.9                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | なしなし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.3<br>0.1<br>0.82<br>0.046<br>2.57<br>6.336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0<br>0.6<br>1.44<br>1.0<br>2.51<br>2.51<br>3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 92.9                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1<br>0.82<br>0.046<br>2.57<br>6.336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.6<br>0.6<br>1.4<br>1.0<br>2.5<br>1.0<br>2.5<br>8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.9                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.1<br>0.82<br>0.046<br>2.57<br>6.336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.6<br>1.44<br>1.0<br>2.55<br>6 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.9                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.82<br>0.046<br>2.57<br>6.336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.44<br>1.0<br>2.56<br>8.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.046<br>2.57<br>6.336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0<br>2.5<br>8 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56.2                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <u>2.57</u><br>6.336<br>新籍(km <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.6                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6.336<br>而藉(km <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.6                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 五種(km <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73.4                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| n AIII (KM <sup>-</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 法律化委                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                       | 計測電音                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 区域主面積(Km <sup>-</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/21/104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                       | 前周辰段                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.0                                                                                                                                                                                                                                                                                                                                                                                                  | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>גר</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95.8                                                                                                                                                                                                                                                                                                                                                                                                  | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.5                                                                                                                                                                                                                                                                                                                                                                                                  | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5.342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 87.3                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| E EE /12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 这些化力                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                       | 순도 (제) (限) min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <u>U104((KM))</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 区域主田積(Km <sup>-</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/21/164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1                                                                                                                                                                                                                                                                                                                                                                                                   | 01/周辰段                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TRUE AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.00173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 面積(km²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 区域全面積(km <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 液状化率                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                       | 計測震度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 履歴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.8                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | あり                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | あり                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.7397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.6                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ī積(km²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 区域全面積(km <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 液状化率                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                       | 計測震度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 履歴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.5                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | あり                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | あり                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.8                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.73<br>0.0057<br>0.7397<br>百積(km <sup>2</sup> )<br>0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 3.<br>8 7.5<br>8 11.2<br>区域全面積(km <sup>2</sup> )<br>13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7<br>8<br>8<br>液状化率                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19.8<br>0.1<br>6.6<br>2.5                                                                                                                                                                                                                                                                                                                                                                             | 5<br>5<br>計測震度<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | あり<br>あり<br>履歴<br>あり                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.8                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 積 (km <sup>2</sup> )<br>0.00173<br>積 (km <sup>2</sup> )<br>0.733<br>0.00578<br>0.73978<br>0.73978<br>0.347<br>0.107<br>0.447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 積 (km <sup>2</sup> ) 区域全面積 (km <sup>2</sup> )<br>0.00173 3.(<br>積 (km <sup>2</sup> ) 区域全面積 (km <sup>2</sup> )<br>0.734 3.<br>0.00578 7.5.5<br>0.73978 11.21<br>積 (km <sup>2</sup> ) 区域全面積 (km <sup>2</sup> )<br>0.34 13.4<br>0.107 11<br>0.447 24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 技(km²)         区域全面積(km²)         淡状化率           0.00173         3.6           積(km²)         区域全面積(km²)         淡伏化率           0.734         3.7         3.6           0.00578         7.58         0.73978           0.73978         11.28         3           積(km²)         区域全面積(km²)         淡伏化率           0.34         13.4         0.107         11           0.447         24.4         3.4 | 技(km²)         区域全面積(km²)         液状化率           0.00173         3.6         0.1           積(km²)         区域全面積(km²)         液状化率           0.734         3.7         19.8           0.00578         7.58         0.1           0.73978         11.28         6.6           積(km²)         区域全面積(km²)         液状化率           0.34         13.4         2.5           0.107         11         1.0           0.447         24.4         1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 技(km <sup>2</sup> )         区域全面積(km <sup>2</sup> )         液状化率         計測雲度           0.00173         3.6         0.1         4           積(km <sup>2</sup> )         区域全面積(km <sup>2</sup> )         液状化率         計測雲度           0.734         3.7         19.8         5           0.00578         7.58         0.1         5           0.73978         11.28         6.6         6           積(km <sup>2</sup> )         区域全面積(km <sup>2</sup> )         液状化率         計測雲度           0.034         13.4         2.5         6           0.107         11         1.0         6           0.447         24.4         1.8         5 |

| 区域   | 液状化被害面積(km <sup>2</sup> ) | 区域全面積(km <sup>2</sup> ) | 液状化率 | 計測震度 | 履歴 |
|------|---------------------------|-------------------------|------|------|----|
| 成田市1 | 0.09                      | 10.6                    | 0.8  | 4    | なし |
| 成田市2 | 0.2                       | 12.9                    | 1.6  | 4    | あり |
| 合計   | 0.29                      | 23.5                    | 1.2  |      |    |

| 区域   | 液状化被害面積(km <sup>2</sup> ) | 区域全面積(km <sup>2</sup> ) | 液状化率 | 計測震度 | 履歴 |
|------|---------------------------|-------------------------|------|------|----|
| 板倉市1 | 0.005721                  | 3.28                    | 0.2  | 5    | なし |
| 板倉市2 | 0.001972                  | 3.11                    | 0.1  | 5    | なし |
| 合計   | 0.007693                  | 6.39                    | 0.1  |      |    |

| 区域   | 液状化被害面積(km <sup>2</sup> ) | 区域全面積(km <sup>2</sup> ) | 液状化率 | 計測震度 | 履歴 |
|------|---------------------------|-------------------------|------|------|----|
| 鹿嶋市1 | 2.29                      | 10.3                    | 22.2 | 6    | あり |
| 鹿嶋市2 | 1.44                      | 11.52                   | 12.5 | 6    | あり |
| 龐嶋市3 | 0.013                     | 8.73                    | 0.1  | 6    | あり |
| 合計   | 3.743                     | 30.55                   | 12.3 |      |    |

| 区域  | 液状化被害面積(km <sup>2</sup> ) | 区域全面積(km <sup>2</sup> ) | 液状化率 | 計測震度 | 履歴 |
|-----|---------------------------|-------------------------|------|------|----|
| 栄町1 | 0.033                     | 2.62                    | 1.3  | 5    | なし |
| 栄町2 | 1.24                      | 14.52                   | 8.5  | 5    | なし |
| 合計  | 1.273                     | 17.14                   | 7.4  |      |    |

| 区域   | 液状化被害面積(km <sup>2</sup> ) | 区域全面積(km <sup>2</sup> ) | 液状化率 | 計測震度 | 履歴 |
|------|---------------------------|-------------------------|------|------|----|
| 美浜市1 | 2.76                      | 2.82                    | 97.9 | 5.5  | なし |
| 美浜市2 | 4.2                       | 4.91                    | 85.5 | 5.5  | あり |
| 美浜市3 | 1.95                      | 4.63                    | 42.1 | 5.5  | あり |
| 美浜市4 | 1.79                      | 4.12                    | 43.4 | 5.5  | あり |
| 美浜市5 | 0.77                      | 4.76                    | 16.2 | 5.5  | あり |
| 合計   | 11.47                     | 21.24                   | 54.0 |      |    |

表-2 は国土交通省が集めた液状化被害資料である。表に 示すように、液状化被害面積 a km<sup>3</sup> を区域全面積Akm<sup>3</sup> で 割った値, すなわち液状化率  $F_R = a/A \times 100(\%)$ , 計測震度, 液状化の履歴の有無を掲載している。

#### 5.3 大規模・中規模・小規模液状化被害の定義

本研究では液状化の被害の程度を大規模,中規模,小規 模と分類する。図-3 で説明したように江東区 1 の a は 1.46 ㎢,A は 2.58 ㎢なので液状化率  $F_R$ は 57.5%となる。江東 区 1~7 まで調査されているので同様な計算をすべて行う と,最終的にはこれらの計算を総和は  $F_R$ =9.8%となる。 例えば宮代市に見られるように,一つだけの調査地点にあ る場合においても同様な計算をし,表-2を完成させた。液 状化の程度,すなわち大規模,中規模,小規模液状化を決 めるのは非常に難しいが本研究では,以降大規模液状化を  $F_R \leq 50\%$ で,中規模液状化を 20%  $\leq F_R < 50\%$ ,小規模液状 化を 1%  $\leq F_R < 20\%$ と定義する。この定義は本研究を進め るうえで便宜上決めた値であって本来詳細な調査と見識 が必要であるが,ここで行う解析手法においては,この定 義がいくらであっても構わないと記しておきたい。

#### 統計的なアプローチによる東日本大震災の液状 化に関するリスク評価<sup>5)</sup>

国土交通省による液状化被害は表-3 以外にも多数調べ られているが,表を作成するに当たり,なるべく同じ計測 震度のデータが重ならない地点を抽出した。

#### 6.1 地震ハザード曲線の評価

まず,地震発生確率の計算を行う。過去 89 年間での陸沖 で発生したマグニチュードと発生個数の関係を調べたと ころ,表-1となった。この三陸沖でのマグニチュード別の 発生確率を計算する。ここでは,領域を図-2 と同様とし, 過去 89 年間のデータから単位面積(1 km)あたりの各規模を 有する地震の年平均発生個数を計算すると表-4 となる。

| マグニチュード | 発生個数 | 年平均個数    |
|---------|------|----------|
| 5       | 2250 | 3.56E-04 |
| 6       | 350  | 5.54E-05 |
| 7       | 24   | 3.80E-06 |
| 8       | 1    | 1.58E-07 |
| 9       | 1    | 1.58E-07 |

表-4 単位面積当たりの年平均発生個数 n

 $I = 1.36M - 4.03\log_{10}(X + 0.00675 \times 10^{0.5M}) + 2.205$ 

次に地震情報から揺れへの換算を行う。マグニチ ュード M, 地震の発生場所から敷地までの距離 X km, 計測震度 I に(2)式の関係があるとする。マグ ニチュードと地震発生場所までの距離から地面 への揺れの強さを予測する関係式は「距離減衰式」 と呼ばれており過去の地震と観測データを用い て経験的に作成されておりさまざまなものが提 案されている。ここでは,計測震度を予測する松 崎・久田・福島の式(2)を利用する。なお、ここで は問題を簡単にするために震源深さを10㎞に限 定する。計測震度とマグニチュードの組み合わせ (I,M)を設定し式(2)を X について解いた式を,計 測震度とマグニチュードを引用すれば当該マグ ニチュード M の地震によって当該計測震度とな る震源距離の最大値が計算できる。計測震度が小 さい程,またマグニチュードが大きい程,最大震 源距離は大きくなり遠い地震まで考えなければ ならない。

さらに揺れの大きさの年超過確率の計算を行う。 ここでは三陸沖での一年間にある計測震度を超 える揺れが発生する確率(年超過確率)を計算する。 地震の発生はポアソン過程従うとする。

ある現象が単位時間当たりへ平均v回発生する ポアソン過程に従うとき時間間隔tの間に少なく とも1回発生する確率は(3)式に表される。

P(時間間隔 t の間に少なくとも 1 回発生する) =1-exp(- v t) (3)

#### 最後に地震ハザードの計算を行う。

まずは,計測震度を超える地震の年平均発生個数を計算する。(3)式に t=1 年を代入し,νには先ほど求めた 年平均発生個数の合計を代入して,計測震度の年超過 確率を計算する。図-4 はこうして求めた地震ハザード 曲線である。



図-4 東日本大震災における地震ハザード曲線

<sup>(2)</sup> 

## 7. 過去の被害データから統計的に求める液状化率 曲線の作成

まず,液状化率曲線の関数の形を選ぶ必要があるがここ では正規分布でフラジリティ曲線をモデル化する。また, 正規確率紙を用いて簡単に求める方法を採用する。次に標 準正規分布関数の逆関数を用いて液状化率を確率紙の縦 軸の値に変換する。

| 大規模液状 | 长1七    |       |
|-------|--------|-------|
| 計測震度  | 全壊率    | 基準化変数 |
| 0.0   | 0.01%  | -3.72 |
| 5.5   | 7.10%  | -1.47 |
| 5.5   | 33.90% | -0.42 |
| 5.0   | 33.50% | -0.43 |
| 5.5   | 32.80% | -0.45 |
| 5.0   | 71.70% | 0.57  |
| 5.5   | 80.20% | 0.85  |
|       |        |       |
|       |        |       |
|       |        |       |

| 中規模液物 | 犬化     |       |
|-------|--------|-------|
| 計測震度  | 全半壊率   | 基準化変数 |
| 0.0   | 0.02%  | -3.54 |
| 5.5   | 8.80%  | -1.35 |
| 5.0   | 4.00%  | -1.75 |
| 5.5   | 11.00% | -1.23 |
| 5.5   | 7.10%  | -1.47 |
| 6.0   | 17.70% | -0.93 |
| 5.5   | 17.60% | -0.93 |
| 6.0   | 7.50%  | -1.44 |
|       |        |       |
|       |        |       |
|       |        |       |
|       |        |       |
|       |        |       |

| 回帰   | 回帰直線  |         | Eデル     |
|------|-------|---------|---------|
| 係数a  | 切片6   | 平均值-b/a | 標準偏差1/a |
| 0.40 | -3.55 | 8.78    | 2.474   |



図-6 東日本大震災の液状化の中規模液状化の正規確率紙

| 小規模液状 | 化化      |       |
|-------|---------|-------|
| 計測震度  | 一部損壞以上率 | 基準化変数 |
| 0.0   | 0.02%   | -3.54 |
| 5.5   | 9.80%   | -1.29 |
| 5.0   | 5.50%   | -1.60 |
| 6.0   | 7.50%   | -1.44 |
| 5.0   | 1.70%   | -2.12 |
| 6.0   | 0.10%   | -3.09 |
| 4.0   | 0.10%   | -3.09 |
| 5.5   | 6.60%   | -1.51 |
| 6.0   | 1.80%   | -2.10 |
| 6.0   | 4.80%   | -1.66 |
| 4.0   | 1.20%   | -2.26 |
| 5.5   | 3.60%   | -1.80 |
| 5.0   | 7.40%   | -1.45 |
| 6.0   | 4.80%   | -1.66 |
| 5.0   | 0.10%   | -3.09 |

| 0.63 | -3.62 | 5.71 | 1.575 |
|------|-------|------|-------|
|      |       |      |       |
|      |       |      |       |
|      |       |      |       |
|      |       |      |       |

回帰直線

切片b

係数a

回帰モデル

平均值-b/a 標準偏差1/a



図-5 東日本大震災の液状化の大規模液状化の正規確率紙

| 回帰直線 |       | 回帰モデル   |         |  |
|------|-------|---------|---------|--|
| 係数a  | 切片6   | 平均值-b/a | 標準偏差1/a |  |
| 0.30 | -3.59 | 12.07   | 3.362   |  |



図-7 東日本大震災の液状化の小規模液状化の正規確率紙

図-5から図-7の大規模液状化率,中規模液状化率,小規模 液状化率の正規分布パラメータを求めたのが表-5である。

表-5 フラジリティ曲線の正規分布モデルのパラメータ

|      | 大規模  | 中規模  | 小規模   |
|------|------|------|-------|
| 平均值  | 5.71 | 8.78 | 12.07 |
| 標準偏差 | 1.58 | 2.47 | 3.36  |

東日本大震災という非常に巨大な地震データなので,小規 模液状化,中規模液状化,大規模液状化ともに想像もつか ない被害レベルレベルとなってしまった。ばらつきを表す 標準偏差はおおよそ 1.5~3.5 となってばらつきが大きく, 正規分布の当てはめに問題があったか,液状化率の定義に 問題があったかも知れない。これらのパラメータを用いて 確率分布関数を描いたものが図-8 であり,計測震度と液状 化率の関係を表すフラジリティ曲線である。



図-8計測震度と被害率(液状化率)の関係を表すフラジリティ曲線

震度は,集計地域の代表値であり,また液状化耐震性能の ばらつきから図-8の計測震度に対する被害率のデータは ばらついたデータとなる。赤は大規模,黄は中規模,青は 小規模となっていて,通常ならば反対の傾向がみられるが, この逆転現象は東日本大震災が,いかに巨大であったかを 物語っている。

#### 8. おわりに

一応,東日本大震災のデータから地震ハザード曲線と液状 化率のフラジリティ曲線を作成した。フラジリティ曲線で は液状化の被害が甚大で正規分布に当てはめることは難 しかった。それ故に、その他の分布の当てはめも考慮すべ きであった。また、地域の特性をすべて同一としてデータ を整理したが、例えば液状化が生じやすいところと、そう でないところなどの地域性を考えるべきであった。データ はまだまだあるので工夫してみたい。

#### 参考文献

- 全国地質調査業協会連合会:絵とき地震による液状化とその 対策,オーム社,2012.
- 鶴岡 弘. WWW を用いた地震活動解析システムの開発,地 球惑星科学関連学会 1997 年合同大会予稿集, B22-P09, p77.
- 3) 鶴岡 弘. WWW を用いた地震活動解析システムの開発(2), 日本地震学会講演予稿集予稿集 1997 年度秋季大会, P04.
- 4) 鶴岡 弘. WWW を用いた地震情報検索・解析システムの開発. 情報処理学会研究報告;データベースシステム 115-9, 情報 学基礎 49-9,65-70(1998).
- 5) 日本建築学会編: EXCEL で学ぶ地震リスク評価, 2011

#### 振動台実験を用いた杭基礎の耐震補強効果の検証および数値解析

Verification of seismic strengthening effect on group-pile foundation with shaking table test and numerical experiment

岡良亮<sup>1</sup>, 森河由紀弘<sup>2</sup>, 三井翔平<sup>3</sup>, 張鋒<sup>4</sup>

- 1 名古屋工業大学・大学院・創成シミュレーション工学専攻
- 2 名古屋工業大学・大学院・社会工学専攻
- 3 名古屋市役所
- 4 名古屋工業大学・高度防災工学センター・E-mail: cho.ho@nitech.ac.jp

#### 概 要

本研究では、既設杭基礎構造物を対象とした耐震対策として、杭基礎周辺の地盤を部分的に改良する工法 に着目し、種々の改良仕様についての実験的、解析的検証を行った。1/50 スケールを想定した重力場振動 台モデル実験では飽和地盤を対象として種々の改良仕様における杭基礎構造物の耐震補強効果を検証した。 実験より、地盤改良で杭基礎部を補強したケースでは杭頭部における曲げモーメントが抑制されたが、改 良体下端部において曲げモーメントが大きくなり、最大曲げモーメントは無補強のケースと同程度である ことが明らかになった。一方、実験と同様の条件下で3次元動的有限要素解析を行った結果、補強したケ ースでは杭頭部の曲げモーメントが抑制される傾向にあったが、改良体下端部において曲げモーメントが 大きくなるなど、実験と同様の傾向が確認された。ただし、解析で確認された変形モードの違いは実験で は確認することができなかった。また、解析では無補強のケースと比べて杭を補強した場合において、曲 げモーメントが最大で3割程度抑制できた。

キーワード: 群杭基礎, 耐震補強, 振動台実験

#### 1. はじめに

杭基礎の損傷は構造物の性能を著しく低下させるだけ でなく、復旧や調査にも多大なコストや労力を要するため、 我が国においても 1995 年に起きた兵庫県南部地震以降、 杭基礎構造物の効果的な耐震補強方法の確立が望まれて いる。特に既設杭基礎構造物の耐震補強は用地や構造体そ のものの制約条件が厳しいため、施工が比較的容易であり 効果的な耐震補強方法の確立は困難を極めている。

このような背景の中,本研究では既設杭基礎構造物を対象とした耐震対策について,杭基礎周辺の部分的な地盤改良に着目した。杭基礎周辺の部分的な地盤改良は,杭基礎周辺の地盤をセメント等で深度的方向に部分的に改良し,改良体により杭基礎を拘束・補強する工法である。部分的な地盤改良は従来の補強工法に比べ,杭の本数やフーチングの拡幅を必要としないため,施工条件や経済性の面で有利であるという特徴を持っている。本稿では,飽和地盤を対象として種々の地盤改良の仕様について,杭基礎の耐震補強効果を実構造物の1/50スケールを想定した重力場における振動台モデル実験を行うことにより検証した。さらに実験と同様の条件下で3次元動のFEM 解析も実施し,上部構造・杭基礎・地盤一体系の耐震評価を行った。

#### 2. 実験概要

#### 2.1 重力場振動台実験装置

重力場振動台実験装置はメンテナンス性において優れ ている空圧式加振装置とせん断土槽によって構成されて いる。空圧式加振装置の主な性能は、最大空圧 1.0MPa, 最大振幅 0.05m,最大加振重量 9.8m/sec<sup>2</sup>である。せん断土 槽は横幅 1.2m,奥行き 1.0m,高さ 0.8m で一層 0.03m の格 子枠×25 層から構成されており、格子枠がベアリングに よって連結されているため、深度方向において実地盤に近 い境界条件(せん断変形)を再現可能となっている。

#### 2.2 構造物モデル

本実験は重力場で行うため相似則を完全に満たすこと はできないが,Buckinghamのπ定理を用いた s=1/50 スケー ルの相似則を適用した杭基礎構造物(9本群杭基礎),及 び上部構造物のモデルを用いている。構造物モデルの寸法 を表1,及び図1に示す。なお,モデル杭にはアルミニウ ムパイプを用いて,杭下端部をウレタンブッシュ構造とす ることにより杭を完全には拘束せず,回転支点(ヒンジ結 合)に近い構造となっている。

表1 構造物モデル

| 項目      |                 | 実物寸法       | 模型寸法     | 相似比      |
|---------|-----------------|------------|----------|----------|
| 杭径      | (m)             | 1.00       | 0.02     | 50       |
| 杭の厚み    | (m)             | 0.014      | 0.001    | 14       |
| 杭長      | (m)             | 25.00      | 0.50     | 50       |
| 杭間隔     | (m)             | 3.00       | 0.05     | 50       |
| 杭の曲げ剛性  | $(N \cdot m^2)$ | 1.11E+09   | 1.89E+02 | 5.87E+05 |
| 上部工の質量  | (kg)            | 7 50000.00 | 6.00     | 125000   |
| 橋脚長     | (m)             | 7.50       | 0.15     | 50       |
| フーチング幅  | (m)             | 9.00       | 0.18     | 50       |
| フーチング厚さ | (m)             | 2.50       | 0.05     | 50       |



#### 2.3 改良体について

本研究の耐震補強方法は機械式攪拌工法、あるいは高圧 噴射工法といった一般的な地盤改良工法によるものを想 定しているため、豊浦標準砂と藤ノ森粘土の混合土に固化 材(高炉セメントB種)、および水を混ぜて作製した。その 際、混合土の比率、及び固化材添加率を変えた一軸圧縮強 度試験を行い、各配合における応カーひずみ関係での一軸 圧縮強度や変形係数のばらつきが少ないものを選び、最適 な配合条件を決定した。改良体の一軸圧縮試験を実施した 結果、一軸圧縮強度は 600kN/m<sup>2</sup>となった。

#### 2.4 実験ケース

地盤の部分固化による改良パターンは多種多様である が、本実験では中村ら<sup>1)</sup>によって実施された乾燥砂を用い た同様の実験を参考に改良パターンを選定した。

実施したケースは無補強の Case0, 杭基礎周辺部をブロ ック状に改良した Case1, Case1 と同程度の改良土量でブ ロックを薄層化した多段式に配置した Case2 の計3ケース について実施した。実験ケースを図2に示す。



#### 2.5 計測機器

実験で使用した加速度計及び、ひずみゲージの計測箇所 を図3に示す。ひずみゲージは奥行方向における中央杭3 本において、9深度に対し設置した。また加速度計および 間隙水圧計は加振装置上面, 土層中央部と端部における4 深度、フーチング上部、構造物部に設置した。



#### 3. 重力場振動台実験結果

モデル地盤は水中落下高さ 0.10m で水中落下法を行い, 地盤の作製を行った。作製地盤は相対密度 24%程度であ った。入力加振加速度は 2m/sce<sup>2</sup>程度とし,4Hz の振動を 10秒間与えた。加振装置上で測定された Case0 における入 力加振加速度の時刻歴を図4に示す。なお,入力加速度は 全てのケースにおいてほぼ同程度であった。



#### 3.1 過剰間隙水圧

図 5,図 6 にブロック状改良(Case1)における A 点(土槽 中央部)の過剰間隙水圧および過剰間隙水圧比の時刻歴を 示す。この結果は他の 2 ケースもほぼ同じ結果となった。 計測したすべての深度において液状化(過剰間隙水圧比が 1.0)に至っており,また加振中においてはサイクリック モビリティに伴う水圧の変動(有効応力の回復)が確認で きる。



#### 3.2 曲げモーメント

図7にL杭(左側), C杭(中央), R杭(右側) での最 大曲げモーメントが計測された時刻における曲げモーメ ント分布を示す。無補強(Case0)では、杭頭部で曲げモーメ ントが最大になっている。これは, 杭上端部がフーチング により固定端となっているため、ヒンジ固定の杭下端部に 比べ曲げモーメントが発生しやすいためだと考えられる。 一方, 補強した Case1, Case2 においては無補強と比較し て杭頭部の曲げモーメントが大きく抑制されている。これ は、剛性の高い改良体が地盤のせん断変形に抵抗したため であると考えられる。また、多段式に改良した Case2 では、 改良効果が広範囲になっていることが確認できる。すなわ ち, 改良土量が同程度であっても, 改良範囲を広くするこ とで広範囲の改良効果が確認できた。しかし、補強したケ ースでは改良体下端付近で曲げモーメントが最大になっ ている。これは、改良体と周辺地盤の剛性差が大きくなっ たため、局所的に応力集中が発生したためであると考えら れる。



#### 図7 曲げモーメント深度分布(実験)

#### 3.3 軸力

図8にL杭,C杭,R杭のうち最大軸力が計測された時 刻における軸力の分布を示す。各ケース共に左右の杭が加 振により圧縮と伸張を交互に受け持つため,C 杭の軸力 はほぼ0であった。また,無補強(Case0)では杭の軸力が深 度に寄らずほぼ一定の値となっており,軸力が杭下端まで 正確に伝達されていることが確認された。一方,補強した 全てのケースで,改良体以深において同程度の軸力が発生 しているが,改良体下端部より上部では軸力が減少してい ることが確認できる。



#### 4. 3 次元動的 FEM 解析概要および解析条件

ここでは、実験と同条件で実施した3次元 FEM 解析の 概要について説明する。本研究の解析は土水連成有限要素 解析プログラム「DBLEAVES」を用いる。「DBLEAVES」 は、地盤-基礎-構造物の相互作用を考慮して、繰返し静 的・動的の土・水連成の境界値問題を解くことが可能なプ ログラムである。

#### 4.1 地盤モデル

地盤は回転硬化型弾塑性構成式「Cyclic mobility model<sup>2)</sup>」 を適用した。Cyclic mobility model は土の力学挙動に大き な挙動を与える土の密度や過圧密比,自然堆積過程に形成 された構造,および応力履歴を受けることで発生した土の 応力誘導異方性を一つのモデル表現できるという特徴を 有している。解析地盤は実験と同様に湿潤状態の豊浦標準 砂とした。地盤材料パラメータは豊浦標準砂の排水三軸圧 縮試験に基づいて行った要素シミュレーションにより決 定した。地盤の材料パラメータを表2に示す。

| Parameter of Soil material                        |                  | Value   |
|---------------------------------------------------|------------------|---------|
| Compression index                                 | λ                | 0.05    |
| Swelling index                                    | κ                | 0.0064  |
| Stress ratio at critical state                    | М                | 1.3     |
| Void ratio (p'=98kPa on N.C.L)                    | e <sub>0</sub>   | 0.87    |
| Poisson's ratio                                   | ν                | 0.3     |
| Degradation parameter of over consolidation state | m                | 0.01    |
| Degradation parameter of structure                | а                | 0.5     |
| Evolution parameter of anisotropy                 | br               | 1.5     |
| wet unit weight                                   | γ <sub>t</sub>   | 15.47   |
| (under water)                                     |                  | (5.47)  |
| Permeability                                      | k                | 5.77E-4 |
| Initial degree of structure                       | $R_0^*$          | 0.8     |
| Initial degree of over consolidation ratio (OCR)  | 1/R <sub>0</sub> | 7.5     |
| Initial anisotropy                                | Č0               | 0       |

表2 地盤材料パラメータ

#### 4.2 下部構造物モデル

杭については杭の軸力変動による曲げ剛性への影響や, 非線形性を考慮することが可能である「AFD model」を用 いている。杭は実験と同様のアルミパイプをモデル化した。 フーチングはアルミ製であるため,弾性体 (E=7.0×10<sup>7</sup>kPa) とした。杭下端はヒンジ結合とした。

#### 4.3 上部構造物モデル

上部構造物については,橋脚部をトリリニアモデル,上 部工は質点(実験と同様に質量6kg)によりモデル化した。 改良体は一軸圧縮試験等により得られたパラメータを用 いて弾性体としてモデル化した。

#### 4.4 解析メッシュ

解析メッシュは対称性を考慮して半断面の 3D メッシュ とした。地盤寸法は、実験に用いたせん断土槽と同様の幅 1.2m、奥行き 1.0m(半断面のため 0.5m)、地盤高さ 0.5m とした。図9に解析に用いた有限要素解析メッシュを示す。



#### 5. 3 次元動的 FEM 解析結果

解析結果と振動台実験結果の比較・考察を行うとともに、 定量的に最大曲げモーメントの比較を行うことによりそ の効果の検証を行う。ここで、入力地震動は、無補強(Case0) 実験において振動台上で計測された応答加速度を地盤底 面より与えた。

#### 5.1 曲げモーメント

図 10 に L 杭, C 杭, R 杭で最大曲げモーメントが計測 された時刻における曲げモーメント分布を示す。図 10 よ り,全ケースにおいて,深度-0.25m~-0.35m 付近で曲げモ ーメントの正負が入れ替わっている。これは地盤の変形モ ードが杭の挙動に影響したものと考えられる。この傾向は 実験では確認されていないが,実験において杭下端部が完 全な自由端でないことが原因であると考えられる。無補強 (Case0)では,杭頭部で曲げモーメントが最大になっており, 補強したケースにおいては無補強と比較して杭頭部の曲 げモーメントが大きく抑えられているおり,実験と同様の 結果となった。また,Case1 と同程度の改良土量で多段式 に改良した Case2 では,広範囲の改良効果が確認できた。 一方で,補強したケースでは改良体下端付近で曲げモーメ ントの増大を確認した。

図11に Case0を1.0とした各ケースの最大曲げモーメントの比率を示す。図11よりブロック状改良では曲げモーメントの低減は確認されなかったが、多段式改良では約3割曲げモーメントが低減しており、改良効果が確認できた。





#### 5.2 軸力

図 12 に L 杭, C 杭, R 杭のうち最大軸力が計測された 時刻における軸力の分布を示す。実験と同様に,各ケース 共に左右の杭が加振により圧縮と伸張を交互に受け持つ ため, C 杭の軸力はほぼ 0 であり,また,無補強(Case0) では杭の軸力が深度に寄らずほぼ一定の値となっており, 軸力が杭下端まで一様に伝達されていることが確認され た。一方,補強した全てのケースで,改良体以深において 同程度の軸力が発生しているが,改良体より上部では軸力 が減少していることが確認され,実験と同様の結果となっ た。また,軸力の最大値に着目すると,無補強のケースと 比較して補強したケースで軸力の最大値が大きくなった。



6. まとめ

本研究では,杭基礎周辺地盤を部分固化する工法におい て,改良体が及ぼす影響を上部構造・杭基礎・地盤一体系 で耐震評価を行った。重力場における振動台実験と同条件 による解析で明らかになった点を以下にまとめる。

- ・改良体により杭頭部で曲げモーメントが抑えられる,杭 下端部において曲げモーメントが増大する傾向が実験 と解析の両方で確認された。
- ・解析において、多段式改良では無補強と比べ最大曲げモ ーメントは約3割抑制されたことを確認した。

#### 参考文献

- 中村圭佑,三井翔平,森河由紀弘,包小華,張鋒:振 動台実験を用いた杭基礎の耐震補強効果の検証および 数値解析、第47回地盤工学研究発表会発表講演集、 pp1107~1110
- F. Zhang, B. Ye, T. Noda, M. Nakano and K. Nakai : Explanation of cyclic mobility of soils: Approach by stress-induced anisotropy, Soils and Foundations, Vol.47, No.4, 635-648. 2007

#### 地震・津波の複合外力による混成堤の進行性破壊

#### Progressive Failure of the Caisson-type Breakwater due to Earthquake and Tsunami

今瀬達也<sup>1</sup>,前田健一<sup>2</sup>,伊藤嘉<sup>1</sup>,三宅達夫<sup>3</sup>,鶴ヶ崎和博<sup>3</sup>,角田紘子<sup>3</sup>,張鋒<sup>2</sup>

- 1 名古屋工業大学・大学院工学研究科・cih18501@stn.nitech.ac.jp
- 2 名古屋工業大学・高度防災工学センター
- 3 東洋建設・鳴尾研究所

#### 概 要

本研究では、地震動による支持地盤の液状化および津波作用時の支持力破壊検討、津波越流による地盤強 度の低下に伴う支持力破壊と支持地盤内に発生する透水力による浸透破壊を対象に、破壊要因となる現象 の時刻変化にみた破壊プロセスを考察した。まず、地震動が作用すると支持地盤の過剰間隙水圧が上昇し て液状化が発生し、防波堤が大きく沈下して、構造的に弱体化することがわかった。この状態で津波が来 襲すると、容易に越流を許してしまう可能性がある。また、地震動による過剰間隙水圧が消散しきれない 状態で津波外力および津波浸透が作用すると、支持力破壊に至る危険性が非常に高くなることがわかった。 さらに、支持地盤内には越流外力と透水力の複合作用により強度が低下することで、支持力破壊および浸 透破壊する可能性が高く、津波の継続的作用に伴って進行的に破壊する可能性を有することがわかった。

キーワード:地震,津波,混成堤,洗掘,進行性破壊

#### 1. はじめに

2011 年に発生した東日本大震災では, Mw9.0 の長周期 地震動が発生し, さらに, 大津波を発生させ, 北海道から 千葉県の広域に渡る太平洋沿岸域に甚大な被害をもたら した。沿岸域では、外郭施設である防波堤等の海岸構造物 が湾内に侵入する津波を遅延させることで避難時間を延 長させるなど一定の防御・減災機能を果たしたが,多くの 構造物は大破してしまい,継続して来襲する津波に対して 耐波機能を喪失した。 今後,発生が予想される東海・東南 海・南海地震では,関東・中部・関西の三大工業地帯を含 む太平洋ベルト地帯の重要港湾が多数あり,また,沿岸域 に沿って人口が密集しているため,津波により被害が生じ た場合,我が国の経済に深刻な問題を発生させる恐れがあ る。そのため、被害を最小限に抑える対策は急務と考える。 特に,ハード対策については,東日本大震災における沿岸 構造物の被害状況の把握と被害メカニズム解明を早急に 行い、抜本的な対策を検討する必要がある。

例えば、外郭施設である防波堤に焦点をあてると、東日本大震災における被害形態<sup>1)</sup>として、1)津波波力型、2) 引波水位差型、3)越流洗掘型、4)堤頭部洗掘型の4つに 分類できる。これらの分類から、考慮すべきキーワードと して、津波外力の規模、越流、引き波、地盤の洗掘が挙げ られる。特に、津波越流による流体衝撃力や渦、乱流によ る地盤洗掘現象については、これまでに研究事例が少なく、 現象を検討する必要性が高い。また、巨大地震災害を対象 とした場合には、海溝型地震特有の長周期成分を含む、長 時間作用し続ける地震動と、津波力の作用を想定した複合 外力作用下の安定性を検討する必要があると考える.

そこで、本稿では以前より実施してきた、混成堤を対象 とした津波による浸透問題や支持力破壊等の地盤工学の 視点から捉えた検討結果<sup>2),3),4)</sup>を踏まえて、海溝型地震津 波を想定した際の地盤液状化による地震被害およびその 後に来襲した津波力作用に伴う混成堤の支持力破壊に対 する安定性について、複合外力作用に伴う混成堤の不安定 化を検討した.また、津波外力については、越流水塊の作 用および捨石マウンド・支持地盤への浸透作用に着目した 支持地盤への外力と内力の複合的作用による不安定化に ついて検討したので報告する。検討にあたり、津波力によ る地盤-構造物への影響を粒子法である SPH 法<sup>5),6)</sup>,地震 動・液状化については弾塑性構成式による土水連成有限要 素解析<sup>7)</sup>を用いた.

### 2. 海溝型地震による長周期地震動が作用する混成 堤の支持地盤不安定化に起因した被害

#### 2.1 検討概要

海溝型地震による長周期地震動を対象とし,混成堤構造 における被害メカニズムについて検討した。混成堤とは, 我が国において軟弱地盤上に防波堤を施工するために多



図1 動的解析に用いた検討断面;(a)全領域,(b)混成堤断面

| 表 1 | 動的解析に用いた地盤材料パラ | メ・ | ータ |
|-----|----------------|----|----|
|-----|----------------|----|----|

| Parameter                                                        |           | As               | Ac               |
|------------------------------------------------------------------|-----------|------------------|------------------|
| Compression index                                                | λ         | 0.050            | 0.130            |
| Swelling index                                                   | κ         | 0.006            | 0.026            |
| Stress ratio at critical state                                   | $R_{f}$   | 3.650            | 3.500            |
| Void ratio (p'=98kPa on N.C.L)                                   | N         | 0.870            | 0.920            |
| Poisson's ratio                                                  | v         | 0.300            | 0.400            |
| Degradation parameter of overconsolidation state                 | т         | 0.100            | 2.200            |
| Degradation parameter of structure                               | а         | 2.200            | 0.100            |
| Evolution parameter of anistropy                                 | $b_r$     | 1.500            | 0.100            |
| Density [t/m <sup>3</sup> ]<br>(under water [t/m <sup>3</sup> ]) | ρ         | 1.800<br>(0.800) | 1.680<br>(0.680) |
| Initial structure                                                | $R_0*$    | 0.800            | 0.600            |
| Initial degree of overconsolidation                              | $1/R_0$   | 2.500            | 1.500            |
| Initial anisotropy                                               | $\zeta_0$ | 0.000            | 0.000            |
| Coefficient of permeability [m/s]                                | k         | 1.000E-04        | 1.000E-09        |



図 2 入力地震動; (a)EQ-Case1, (b)EQ-Case2



図 3 地震終了直後および地震発生 90 分後の過剰間隙水圧比分 布; (a)EQ-Case1, (b)EQ-Case2

く用いられている床掘り・置換砂工法によって施工された 支持地盤上に,捨石マウンドおよびケーソンを据え付けた 構造である。解析断面および混成堤断面を図1に示す。動 的解析は,回転硬化型弾塑性構成式 Cyclic mobility model による土水連成有限要素解析プログラム「DBLEAVES」を 用いた.

#### 2.2 解析条件

境界条件は,静的解析時においては,下部をx,z方向の 変位を固定,側面はx方向の変位を固定している。動的解 析時においては,下部をx,z方向の変位を固定,側面は等 変位境界とした.水理条件は,下面および側面は非排水境 界,上面は排水境界とした。

解析パラメータとして、As 層を緩い砂層、Ac 層を緩い 粘土層と想定し、過去に実施した豊浦砂および藤の森粘土 の解析例を参照して決定した(表 1)。また、基盤層である Ds 層および防波堤および捨石マウンドは弾性体材料と仮 定して検討している。

入力地震動は,岐阜大学・杉戸真太教授よりご提供頂い た想定される東海・東南海・南海3連動による地震動波形 および内閣府中央防災会議により2012年以前に提示され た想定地震動を用いた(図2)。本稿では,前者をEQ-Case1, 後者をEQ-Case2としている。



図 4 防波堤天端における鉛直沈下量;(a)地震発生 t=0s から t=500s まで,(b)地震発生 t=0s から t=10 時間まで

#### 2.3 解析結果

#### 2.3.1 過剰間隙水圧比分布の変化

図 3(a)に EQ-Case1, 図 3 (b)に EQ-Case2 における地震終 了後と地震発生 90 分後の過剰間隙水圧比を示す。

EQ-Casel および EQ-Case2 ともに,地震終了後に表層の 粘土地盤および各砂層地盤において,過剰間隙水圧の上昇 により過剰間隙水圧比が 1.0 近くまで上昇している。特に, 防波堤下の置換砂においては,防波堤および捨石マウンド による上載荷重が少ない箇所で過剰間隙水圧比が 1.0 とな り,液状化に至っていると考えられる。また,粘土地盤で も水圧の上昇が見られ,過剰間隙水圧比が 0.6 程度まで上 昇している。

地震発生 90 分後には、砂層において、発生した過剰間 隙水圧の消散による過剰間隙水圧比の減少が見られるも のの、依然として過剰間隙水圧が高く地盤が不安定な状態 が続いていることがわかる。防波堤下の置換砂では、過剰 間隙水圧比が約 0.5~0.6 程度である。また、粘土層におい ても、過剰間隙水圧比が比較的高い状態が続いている。

#### 2.3.2 防波堤の沈下

図 3 に EQ-Case1 および EQ-Case2 の防波堤天端におけ る沈下量の経時変化を示す。図 3(a)は地震動載荷開始を *t* =0 として,加振中を含めた *t*=500s までを示し,図 3 (b)は 地震動載荷開始を *t*=0 として, *t*=10hours までを示している。

図 3 (a)に着目すると, EQ-Case1 では地震波形に従って, t=0~50s, 50~100s, 100~200s の三段階によって沈下が 進行している。加振終了後の t=200s 時には, 沈下量が約



図5 津波解析のための解析断面

| 表 2 | 津波解析における解析ケース |
|-----|---------------|
|-----|---------------|

| CASE    | 地震によ<br>る防波堤<br>の沈下 | 初期<br>水位差 | 越流 | 支持力破壞                      |
|---------|---------------------|-----------|----|----------------------------|
| Case1-1 |                     |           |    | 波力のみ                       |
| Case1-2 |                     | 8.2m      | 大  | 波力+地震による残留過<br>剰間隙水圧+津波浸透力 |
| Case2-1 | は沖垣の                |           |    | 波力のみ                       |
| Case2-2 | 沈下あり                | 6.5m      | 小  | 波力+地震による残留過<br>剰間隙水圧+津波浸透力 |
| Case3-1 |                     |           |    | 波力のみ                       |
| Case3-2 |                     | 4.2m      | なし | 波力+地震による残留過<br>剰間隙水圧+津波浸透力 |
| Case4   | 吐油相の                | 8.2m      | 大  | 波力のみ                       |
| Case5   | 防波堤の                | 6.5m      | 小  | 波力のみ                       |
| Case6   | ルールし                | 4.2m      | なし | 波力のみ                       |

1.050m となった。一方で, EQ-Case2 では最大加速度となる t=50s より急激に沈下が進行し,加振終了後の t=163s 時には,沈下量が約 0.966m となった(図 3 (b))。

その後,地震発生90分後の沈下量はEQ-Case1で-1.200m, EQ-Case2で-1.140m程度,また,地震発生10時間後の沈 下量はEQ-Case1で-1.290m, EQ-Case2で-1.190m程度まで 沈下した。

### 地震動による沈下および過剰間隙水圧の変動を 考慮した津波外力作用時の支持力破壊検討

#### 3.1 検討概要

地震による防波堤の沈下および支持地盤の過剰間隙水 圧変動を考慮した,防波堤に津波力が作用した際の支持力 破壊に対する安全性を検討する。検討に用いた解析手法に ついては,参考文献 2),3)に詳しい。本研究では,前項に おいて検討した動的解析による結果(EQ-Caselのみ)を 用いている。ただし,本検討では,初期水位 H.W.L に地震 発生 90 分後の防波堤天端の沈下量(-1.200m)を加えるこ とで,地震動による変形を表現した。また,津波解析にお いては,構造物,捨石また地盤は変形しないものとする。 ただし,捨石および支持地盤については,適当な透水性を 与えた多孔質構造となっている。

津波外力は沖に水位差を設けて水塊を設定し, Dam break による段波津波を発生させて, 防波堤に作用させた。 ただし, 越流量を変化させて, その影響について考察する ため, 初期の水位差  $\Delta h$ =4.2, 6.5, 8.2m に設定した。各解 析ケースを表 2 に示す。



図 6 支持力破壊に対する余裕度変化(Case1-1, Case1-2 および Case4)



図 7 支持力破壊に対する余裕度変化(Case2-1, Case2-2 および Case5)



図8 支持力破壊に対する余裕度変化(Case3-1, Case3-2 および Case6)

#### 3.2 支持力破壊に対する検討

支持力に対する強度の算出は、港湾設計指針<sup>8)</sup>の簡易ビ ショップ法を参照し、次式により支持力余裕度を求めた。

$$F_{f} = \sum \left\{ \left[ c_{d}S + (W'_{d} + q_{d}) \tan \phi_{d} \right] \frac{\sec \theta}{1 + \tan \theta \tan \phi_{d}} \right\}$$
(1)  
$$-\sum \left\{ (W_{d} + q_{d}) \sin \theta + a P_{Hd} / R \right\}$$

ここに、 $c_d$ :見かけの粘着力[kN/m<sup>2</sup>]、S:分割片の幅[m]、  $W_d'$ :単位長さ当たりの分割片の有効重量[kN/m]、 $q_d$ :分割 片上部からの鉛直荷重[kN/m]、 $\phi_d$ :内部摩擦角[°]、 $\theta$ : 分割片底面が水平面となす角度[°]、 $W_d$ :単位長さ当たり の分割片の全重量[kN/m]、 $P_{Hd}$ :円弧滑りの滑り円内の土 塊への水平作用力[kN/m]、a:  $P_{Hd}$ の作用位置の円弧滑り の滑り円中心からの距離[m]、R:円弧滑り円の半径[m] である。本計算においては、見かけの粘着力はないものと している ( $c_d$ =0)。

本検討では,式(1)の波力による評価に加えて,スライス 地盤内の過剰間隙水圧変動(地震により発生した過剰間隙



(a)



図 9 港湾における津波流動場のモデル化;(a)解析全断面;(b)混 成堤と間隙水圧抽出箇所および円弧滑り線

水圧(*t=90*分時の値)と津波による地盤内浸透力を加算し た値)を考慮し、スライス土塊の有効重量を可変して評価 した結果を示す。

図 6~8 に各検討ケースにおける支持力に対する余裕度 の経時変化を示す。すべての図において,黒実線は健全な 防波堤に対して波力のみを考慮した場合,青点線および赤 一点鎖線は地震動による防波堤の沈下を考慮して,前者は 波力のみを用い,後者は波力に加え,地震液状化による地 盤剛性低下,地盤内浸透力を考慮したものを示している。

各ケースとも健全時の場合と地震動による防波堤沈下 を考慮した場合では、差ほど大きな違いはないことがわか る。しかし、地震動による支持地盤の残留過剰間隙水圧お よび津波作用時の波力と津波透水力を考慮した場合では、 支持力に対する強度が低く、特に初期の段波圧作用時に支 持力破壊に至る可能性が高くなることがわかった。

一方で,越流による影響については,防波堤が地震動に より沈下したことで防波堤背後の水位が高く,さらに,防 波堤の断面構造上,越流水の背後への入射角度が鈍角であ ったため,背後地盤への影響はあまりみられなかった。

#### 4. 越流・浸透による支持地盤の破壊プロセス

#### 4.1 解析検討の概要

前章までと同様に混成堤を対象として,解析領域の全断 面および混成堤断面を若干変化させ,越流および浸透に対 する支持地盤の安定性について検討した。図9(a)には,解 析全領域を図9(b)には混成堤断面と支持地盤内の間隙水 圧の計測箇所および支持力に対する安全性を検討するた めに用いた円弧滑り線を示したものを示す。

津波は前章と同様にDam breakによる段波津波を発生させた。また、初期水位差  $\Delta h=0.96$ 、6.40m に設定し、越流の有無による検討を行った。捨石および支持地盤には適当



図 10 越流時における防波堤背後地盤の鉛直動水勾配分布(左 図;越流なし、右図;越流あり)



図 11 防波堤背後地盤の鉛直・水平方向の動水勾配変化(G1-G2 間・G2-G3 間:垂直方向, F2-G2 間:水平方向)

な透水性を与え、津波浸透が発生できる構造となっている。

#### 4.2 解析結果

#### 4.2.1 越流による防波堤背後地盤への衝撃圧載荷と防 波堤背後地盤の鉛直動水勾配変化

越流による防波堤背後地盤の影響を検討するため,鉛直 上向き動水勾配を算出した。動水勾配は,各間隙水圧抽出 箇所における過剰間隙水圧から求めた圧力水頭に位置水 頭を加えたピエゾ水頭を抽出箇所間距離で除して求めた。 越流作用時における海底地盤内の動水勾配分布を図 10 に 示す。ここで,正は上向き勾配を意味している。

越流がない場合は、背後地盤の動水勾配の上昇が見られ ない。越流がある場合は、防波堤直下から捨石マウンド法 先に至る地盤表層付近で動水勾配が 1.0 まで上昇した。ボ イリング現象が発生する限界動水勾配  $i_{cr}$ は、限界動水勾 配に達するまでの浸透流が Darcy 則に従うとすると、おお よそ  $i_{cr}$ =0.7~1.0 となる<sup>9</sup>。本解析においても、支持地盤 においては、Darcy 則に従った土水連成解析を行っている ことから、支持地盤が液状化に似た状態になると考えられ る。

次に,防波堤直下および港内側の防波堤後趾付近における鉛直上向きおよび水平方向の動水勾配の経時変化を図 12に示す。

防波堤下から後方の支持地盤で,越流による水塊が作用 する時刻(t=11~12秒)以前のt=9秒程度よりF2-G2間 の水平動水勾配が上昇し,防波堤背後へと浸透流が発生す ることがわかる。また,同時刻のt=9~10秒前後にかけて 鉛直上向きの動水勾配も上昇していることから,越流水塊 が作用する以前において,支持地盤が透水力を受け浸透破



図 12 支持力破壊に対する安定性の検討;(a)津波圧による単位奥 行き当りのモーメント,(b)防波堤の支持力に対する余裕 度の経時変化



図 13 支持力に対する余裕度と水平方向(F2-G2間)の動水勾配 変化のクロスプロット

壊する可能性がある。

#### 4.2.2 支持力破壊に対する検討

越流の作用に伴い,防波堤背後地盤が強度低下すること がわかった。よって,防波堤に津波が作用している最中に 防波堤の支持力が低下することが想定されたため,次に, 越流に伴い発生する地盤内水圧変動を考慮した支持力破 壊に対する安定性を検討した。

図 12 (a)に防波堤に作用した津波圧による単位奥行き当 りのモーメント,図 12 (b)に防波堤の支持力に対する余裕 度を示す。余裕度の算出については、3.2 と同様である。 また,地盤スライス内の過剰間隙水圧の上昇による地盤の 強度低下を考慮するため,地盤の有効重量から過剰間隙水 圧分(EPWP)を引いて算出した結果についても検討してい る。

越流が発生しないケースについては,支持力破壊を起こ さない結果となったが,越流が発生するケースについては, 津波力の変動に従って余裕度も変動することに加え(図 9(b);赤実線),ケーソン背後地盤における過剰間隙水圧の 発生に伴った強度低下により,支持力破壊に対する危険性 が一段と高くなることがわかる(図 9(b);赤点線)。その 現象は,越流は発生する間(約 11 秒~32 秒),越流発生 後のケーソン背後の水位変動が生ずる間(約 32 秒~40 秒) に大きく影響を及ぼしている。

#### 4.2.3 支持力余裕度と水平動水勾配のクロスプロット

本章で検討してきた支持力に対する余裕度と防波堤下 部から背後にかけて作用する水平方向の動水勾配(F2-G2 間)をクロスプロットし,破壊要因の影響度について検討 する(図13)。

越流が発生するような比較的大きな津波外力が混成堤 に作用する際,越流と同時にケーソン下の支持地盤内では 透水力も大きくなる。すなわち,支持地盤内においては, 越流による支持地盤上面からの作用に加え,内部からの浸 透を受けた複合外力により強度低下が促進される可能性 が非常に高いと考える。よって,ケーソン下の支持地盤の 変形問題については,この影響を考慮を十分に考慮する必 要がある。

#### 5. 結言

本研究では,地震動による支持地盤の液状化および津波 作用時の支持力破壊検討,津波越流による地盤強度の低下 に伴う支持力破壊と支持地盤内に発生する透水力による 浸透破壊を対象に,破壊要因となる現象の時刻変化にみた 破壊プロセスを考察し,次の結果を得た。

- 長周期地震動が作用した場合,砂質地盤では,過剰間 隙水圧の上昇により液状化に至る可能性が非常に高い。 また,粘土地盤においても,過剰間隙水圧が発生し, これらの影響に伴って,防波堤は大きく沈下すること がわかった。また,粘土地盤で発生した過剰間隙水圧 は消散に時間を要するため,長期に渡り,沈下が発生 する可能性がある。防波堤が沈下すると,越流を容易 に許してしまい,背後への津波侵入量が大きくなるこ とが懸念される。
- 2) 地震動により発生した過剰間隙水圧の消散途中で、津 波が来襲し防波堤に作用することが考えられるが、こ の際には、支持地盤内の間隙水圧が高く、不安定な状 態にあり、防波堤の滑動・転倒に加えて、津波外力を 受けて支持力破壊に至る可能性が高い。
- 3) 越流した津波の防波堤背後への流動挙動(背後海面への流入角度,速度など)によっては、防波堤背後地盤に越流水塊が作用し、比較的流速が速い水塊が作用することにより、背後地盤内に過剰間隙水圧が発生し、上向きの動水勾配により支持地盤が液状化に似たような状態となりうることがわかった。これに伴い、より一層支持力破壊に至る可能性が高くなることがわかった。さらに、越流と同時にケーソン下の捨石マウンドおよび支持地盤内では津波浸透に伴って透水力が作用

し,浸透破壊に至ることが考えられる。これにより, 越流による支持地盤上面からの作用に加え,内部から の浸透を受けた複合外力により,洗掘現象等により地 盤変状が一層進行する可能性が高いことが懸念される。 よって,越流による背後地盤の洗掘対策に加え,ケー ソン下部の浸透破壊対策も十分検討する必要がある。

今後は、地盤の変状プロセスを加味した解析検討に基づいて(例えば、図14)、より詳細なケーソンの破壊メカニズムを分析し、抜本的な対策を提案する.



図 14 地盤変状有無に伴ったケーソンの破壊プロセス(左:滑動 によるケーソンの移動,右:地盤変状に伴ったケーソンの 支持力破壊)

謝 辞:本研究は、日本学術振興会科学研究費補助金基盤 研究(B)23360203 および特別研究員奨励費(24・9200)の 助成受けたものです。また、地震動データは岐阜大学・杉 戸真太教授よりご提供頂きました。ここに記して感謝の意 を表します。

#### 参考文献

- 1) 地盤構造物耐津波化研究委員会: 第2回議事録, 2011.
- 2) 三宅達夫,角田紘子,前田健一,坂井宏隆,今瀬達也:津波の遠心力場における実験手法の開発とケーソン式防波堤への適用,海洋開発論文集,第25巻,pp.87-92,2009.
- 3) 今瀬達也,前田健一,三宅達夫,鶴ヶ崎和博,澤田豊,角田 紘子:津波力を受ける捨石マウンドー海底地盤の透水現象 に着目した海岸構造物の安定性,土木学会論文集 A2(応用力 学), Vol. 67, No. 1, pp. 133-144, 2011.
- 今瀬達也,前田健一,三宅達夫,鶴ヶ崎和博,澤田豊,角田 紘子: 捨石マウンドー海底地盤への津波浸透による混成堤 の不安定化,土木学会論文集 B2(海岸工学), Vol. 67, No. 2, pp. I\_551-I\_555, 2011.
- 5) Lucy, L. B. : A numerical approach to the testing of the fission hypothesis Astronomical Journal, Vol.82, pp.1013-1024, 1977.
- Gingold, R. A. and Monaghan, J. J.: Smoothed Particle Hydrodynamics: Theory and application to non-spherical stars, Monthly Notices of the Royal Astronomical Society, 181, pp. 375-389, 1977.
- F. Zhang, B. Ye, Noda, T., Nakano, M. and Nakai, N.: Explanation of cyclic mobility of soils: Approach by stress-induced anisotropy, Soils and Foundations, Vol.47, No.4, pp. 635-648, 2007.
- (社)日本港湾協会:港湾の施設の技術上の基準・同解説
   (上)・(下),2007.
- 9) 関ロ秀雄: 漂砂流砂系における地形変化災害-とくに海岸 侵食研究の展望, 京都大学防災研究年報, 第53 号 A, 2010.

#### 低拘束圧における豊浦砂の力学挙動の実験的研究

Experimental research on the mechanical behavior of Toyoura sand under low confining

#### pressure

長田辰弥<sup>1</sup>,加藤守人<sup>2</sup>,森河由紀弘<sup>1</sup>,張鋒<sup>3</sup>

- 1 名古屋工業大学・大学院・社会工学専攻
- 2 青葉工業株式会社
- 3 名古屋工業大学・高度防災工学センター・E-mail: cho.ho@nitech.ac.jp

#### 概 要

液状化のメカニズムに関する実験的・解析的研究が数多くなされており,液状化を表現する各種要素試験 やそれに基づく構成式の提案,数値解析手法の開発も徐々に増えている。しかし,土の力学挙動,特に変 形挙動は極めて複雑であり,それを数値解析で精度よく表現するためには,種々の拘束圧における土の力 学挙動を正確に把握することが必要不可欠である。そこで,本研究では要素試験,及び構成式の研究で未 だ十分に議論されてない低拘束圧状態(地表面付近の応力状態)における砂地盤の力学特性に着目し,静 的・動的三軸試験を実施した。実験では,種々の拘束圧の下,応力振幅や載荷速度などが砂の力学挙動に与 える影響について,非排水繰返し載荷試験および排水・非排水変位制御単調圧縮試験で検証した。

キーワード:繰返し三軸試験,低拘束圧,砂質土

#### 1. はじめに

地震時における地盤の挙動や液状化を評価するために, 要素試験だけでなく,精巧な構成式に基づいた数値解析を 用いることも徐々に増えてきている。地盤材料の変形特性 を精度よく表現するためには,要素試験によって種々の拘 束圧における土の力学挙動を正確に把握しなければなら ない。本稿では,初期拘束圧が5kPaから20kPaという低 拘束圧条件下での砂の非排水繰返し載荷試験,及び排水・ 非排水変位制御単調圧縮試験を行い,砂の力学挙動を検証 した。

#### 2. 試験概要

本研究では、動的三軸試験機を用いて非排水繰返し載荷 試験、及び排水・非排水変位制御単調圧縮試験を行った。 試験機の概要を Fig. 1 に示す。低拘束圧条件下での試験を 行うにあたり、本試験機では側圧・背圧の制御にレギュレ ータを用いることで、載荷圧力が 1kPa の単位で制御可能 になっている。また、ロードセルの定格容量も小さいもの (0.1kN)を使用しており、低拘束圧条件下でも精度の良 い計測が可能になっている。試験には Table. 1 に示す物理 特性を持つ豊浦砂を用いた直径 5cm、高さ 10cm の円柱供 試体を使用している。供試体は水中落下法によって作成し、 緩詰めの状態(Dr=20~30%程度)と、3 層に分けて 15 回 突き固めた中密な状態(Dr=50~70%程度)とした。また, 本試験は低拘束圧で行うため,通常のものより柔らかいラ テックス製のメンブレン(厚さ 0.15mm)を使用している。



Fig.1 周辺機器及び三軸室の概要

#### Table.1 豊浦砂の物理特性

| 土粒子の比重 G <sub>s</sub> (g/cm <sup>3</sup> ) | 2.65  | 均等係数                                       | 1.37  |
|--------------------------------------------|-------|--------------------------------------------|-------|
| 最大粒径 (mm)                                  | 0.425 | 最大密度 ρ max(g/cm <sup>3</sup> )             | 1.647 |
| 最小粒径 (mm)                                  | 0.102 | 最小密度 ρ <sub>min</sub> (g/cm <sup>3</sup> ) | 1.347 |
| 60%粒径 (mm)                                 | 0.281 | 最大間隙比 emax                                 | 0.975 |
| 30%粒径 (mm)                                 | 0.241 | 最小間隙比 emin                                 | 0.613 |
| 10%粒径 (mm)                                 | 0.206 |                                            |       |

#### 3. 試験結果

本稿では、緩い砂や中密な砂を用いて非排水繰返し載荷 試験を行うことにより、初期拘束圧の影響と初期間隙比の 影響を調べるとともに、排水条件下、及び非排水条件下に おける変位制御単調圧縮試験を行った。

#### 3.1 非排水繰返し載荷試験

#### 3.1.1 緩い砂における非排水繰返し載荷試験

間隙比が  $e=0.79\sim0.93$  程度の緩い砂を対象に、種々の初 期拘束圧(98kPa, 20kPa, 10kPa, 5kPa)の条件下で、異 なる応力比( $q/2\sigma_{m0}=0.15$ , 0.20, 0.25)において非排水繰 返し載荷試験を行った。試験条件等を Table. 2~Table. 5 に 示す。ここでの応力比は、偏差応力 q を初期拘束圧  $p_0$ の2 倍で除した値であり、また表中の DA=5%、DA=10%はそ れぞれ両振幅ひずみが 5%、10%に至るまでの繰返し回数 を示す。なお、載荷周波数は全試験で 0.01Hz としている。

Table.2 試験条件(緩い砂,  $\sigma_{m0}=98$ kPa)

|            | (i)  | (ii) | (iii) |
|------------|------|------|-------|
| 初期拘束圧(kPa) | 98   | 98   | 98    |
| 応力比        | 0.15 | 0.20 | 0.25  |
| 間隙比 e      | 0.93 | 0.93 | 0.91  |
| DA=5%      | 19.5 | 2.5  | 1.6   |
| DA=10%     | 23.5 | 4.7  | 2.7   |

Table.3 試験条件(緩い砂,  $\sigma_{m0}=20$ kPa)

|            | (i)  | (ii) | (iii) |
|------------|------|------|-------|
| 初期拘束圧(kPa) | 20   | 20   | 20    |
| 応力比        | 0.15 | 0.20 | 0.25  |
| 間隙比 e      | 0.85 | 0.84 | 0.92  |
| DA=5%      | 5.1  | 2.7  | 1.1   |
| DA=10%     | 7.1  | 4.7  | 2.2   |

| Table, 4  | 試験条件      | (緩い砂, | $\sigma_{m0}=10$ kPa |
|-----------|-----------|-------|----------------------|
| 1 40101 1 | H WWWWWWW |       | 01101 10101 00       |

|            | (i)  | (ii) | (iii) |
|------------|------|------|-------|
| 初期拘束圧(kPa) | 10   | 10   | 10    |
| 応力比        | 0.15 | 0.20 | 0.25  |
| 間隙比 e      | 0.88 | 0.91 | 0.91  |
| DA=5%      | 2.6  | 2.1  | 1.1   |
| DA=10%     | 4.1  | 4.1  | 2.7   |

| Table. 5 | 試験条件 | (緩い砂, | $\sigma_{m0}=5$ kPa) |
|----------|------|-------|----------------------|
|----------|------|-------|----------------------|

|            | (i)  | (ii) | (iii) |
|------------|------|------|-------|
| 初期拘束圧(kPa) | 5    | 5    | 5     |
| 応力比        | 0.15 | 0.20 | 0.25  |
| 間隙比 e      | 0.84 | 0.87 | 0.79  |
| DA=5%      | 3.3  | 1.1  | 1.7   |
| DA=10%     | ×    | 2.7  | 4.2   |

Fig. 2~Fig. 5 に異なる初期拘束圧における非排水繰返 し載荷試験結果を示す([a]:有効応力経路,[b]:偏差応 力~軸ひずみ)。[a] 図に示す有効応力経路より,低拘束 圧条件下であっても通常拘束圧(σ<sub>m0</sub>=98kPa)と同様に,繰返 し載荷により有効応力が減少し,サイクリックモビリティ を伴った液状化現象が確認できた。

せん断応力比に着目すると、全てのケースにおいてせん 断応力比が大きくなるにつれて、液状化 (p'=0) に至るま での繰返し載荷回数や、Table. 2~Table. 5 に示す DA=5%、 DA=10%までの繰返し載荷回数が減少する傾向にある。

ここで、Fig. 5(i) ( $\sigma_{m0}$ =5kPa,  $q/2\sigma_{m0}$ =0.15) に示す [a] 図:有効応力経路に着目すると、繰返し載荷に伴い平均有 効応力が減少するものの液状化 (p'=0) には至っていない。 また、[b] 図:軸ひずみ〜偏差応力関係においても、軸ひ ずみは 5%以上発達せず、同じループを描いていることが 分かる。これについては、二つの原因が考えられる。一つ 目は、初期拘束圧がもともと小さい故に、有効応力が小さ くなるにつれて、メンブレンの剛性が土の剛性に比べ、相 対的に無視できない程大きくなってしまたため、メンブレ ンのご剛性が影響したと考えられる。二つ目は、緩い砂に おいても、拘束圧が非常に小さいため、砂が密な状態にな っていることも事実であり(後ほどの静的載荷でこの現象 が再度確認できる)、砂の本来の特性であることも考えら れる。今後試験の数を増やしてこの現象を確認する必要性 がある。

次に初期拘束圧の違いに着目すると, Fig. 2(通常拘束 圧), Fig. 3(低拘束圧)に示す[a]図:有効応力経路よ り,初期拘束圧が低拘束圧(20kPa)の場合,載荷初期に おける有効応力減少幅が大きい傾向にある。また, Table. 2, Table. 3に示すように応力比 0.15においては液状化に至る までの繰返し載荷回数(DA=5%, DA=10%)までの繰返し 載荷回数が格段に小さくなっている。

Fig. 3~Fig. 5 の [a] 図より,低拘束圧条件下 (5kPa~20kPa)の場合,初期拘束圧に因らず有効応力経路 に大きな違いは見られなかった。これは,通常拘束圧と比 較して結果の違いが顕著であることとは異なり,初期拘束 圧が低拘束圧の範囲(5kPa~20kPa)では,初期拘束圧が有 効応力経路に及ぼす影響は小さいことが確認された。

Fig. 2 [b], Fig. 5 [b] 図の軸ひずみ〜偏差応力関係を比較 すると,初期拘束圧 98kPaでは応力比 0.20, 0.25 において 三軸圧縮側にひずみが出にくく,伸張側のひずみが大きく 発生している傾向にあるが,初期拘束圧 5kPa の場合では 伸張側のひずみが出にくく,圧縮側のひずみが大きく発生 している傾向にあることも確認された。





3.1.2 中密な砂における非排水繰返し載荷試験

間隙比が e=0.73~0.76 程度の中密な砂を対象に, 種々の 初期拘束圧(20kPa, 10kPa)の条件下で, 異なる応力比 (q/2 \sigma\_{m0}=0.15, 0.20, 0.25)において非排水繰返し載荷試 験を行った。試験条件等を Table. 6~Table. 7 に示す。

| Table. 6 | 試験条件 | (中密な砂, | $\sigma_{m0}=20$ kPa |
|----------|------|--------|----------------------|
|          |      |        |                      |

|            | (i)  | (ii) | (iii) |
|------------|------|------|-------|
| 初期拘束圧(kPa) | 20   | 20   | 20    |
| 応力比        | 0.15 | 0.20 | 0.25  |
| 間隙比 e      | 0.74 | 0.73 | 0.76  |
| DA=5%      | ×    | 34.9 | 6.2   |
| DA=10%     | ×    | 45.5 | 16.4  |

| Table. 7 | 試験条件 | (中密な砂, | $\sigma_{m0}=10$ kPa) |
|----------|------|--------|-----------------------|
|----------|------|--------|-----------------------|

|            | (i)  | (ii) | (iii) |
|------------|------|------|-------|
| 初期拘束圧(kPa) | 10   | 10   | 10    |
| 応力比        | 0.15 | 0.20 | 0.25  |
| 間隙比 e      | 0.75 | 0.75 | 0.76  |
| DA=5%      | ×    | ×    | 5.7   |
| DA=10%     | ×    | ×    | 16.2  |

Fig. 6~Fig. 7 に異なる初期拘束圧における非排水繰返 し載荷試験結果を示す。[a] 図に示す有効応力経路より, 中密な砂であっても緩い砂と同様に,繰返し載荷により有 効応力が減少し,サイクリックモビリティを伴った液状化 現象が確認できた。また,応力比が小さい場合は有効応力 が減少しきらず,液状化に至っていないことが分かる。

初期拘束圧の違いに着目すると、中密な砂においては初 期拘束圧が小さいほどサイクリックモビリティを伴う液 状化が発生しにくくなる現象が確認された(特に応力比 0.20 の場合)。これは、同じ間隙比のもとで、拘束圧が小 さければ砂がより密な状態であることが原因と考えられ る。ただし、Table. 6~Table. 7 に示す DA=5%, DA=10% の値や Fig. 6(iii)~Fig. 7(iii)より、初期拘束圧の影響が少な いケースもあるため、更なる検証が必要だと考えられる。

次に初期間隙比の違いに着目し, Fig. 3(iii)とFig. 6 (iii) に示す初期拘束圧 20kPa, 応力比 0.25 における初期間隙比 の影響を比較した。比較図を Fig. 8, Table. 8 に示す。ここ で,(a)図は有効応力経路の無次元量,(b)図は偏差応力の 無次元量と軸ひずみの関係を示す。(a)図から,初期間隙比 が大きいほど載荷初期における有効応力減少幅が大きい ことがわかる。また,Table. 8 に示す DA=5%, DA=10%の 値から,初期間隙比が大きいほどひずみが発達しやすく, サイクリックモビリティを伴う液状化が発生しやすいこ とがわかる。しかし, Fig. 8(a)に示す中密な砂の非排水繰 返し載荷試験において,サイクリックモビリティに入ると 時には有効応力の値がマイナスになることが数回の同様 の実験で確認されている。その解釈は現段階ではまだでき ていないが,今後さらなる実験を重ねてその再現性を確認 し,解釈できるように研究していきたい。







Fig. 8 初期拘束圧20kPa での初期間隙比の異なる試験結果

| Table. 8 | 試験条件 | (初期間隙比の影響) |      |      |
|----------|------|------------|------|------|
| 間隙       | 比e   |            | 0.92 | 0.76 |

| 间原比 e  | 0.92 | 0.76 |
|--------|------|------|
| DA=5%  | 1.1  | 6.2  |
| DA=10% | 2.2  | 16.4 |

#### 3.2 変位制御単調圧縮試験

緩い砂,及び中密な砂の異なる初期拘束圧での排水・非 排水単調載荷試験(変位制御)を行った。載荷条件は全試 験において載荷変位速度を 0.04%/min とした。以下に試験 の考察を述べる。

#### 3.2.1 初期拘束圧の影響

試験条件,試験結果を Fig. 9, Table. 9 に示す。ここで, Fig. 9(a)図は有効応力経路(排水・非排水条件), Fig. 9(b) 図は応力比~偏差ひずみ関係(排水条件)を示す。Fig. 9(a) より,非排水条件下では有効応力が一旦減少するが,限界 状態に達すると限界状態線に沿って有効応力が上昇する ことが確認され,通常拘束圧条件下における中密な砂の挙 動を示し,砂の緩い・密な状態を判断する際,間隙比だけ でなく拘束圧も判断の要因となることを示している。また, 排水条件下での応力経路では,有効応力(応力比)の上昇 が非排水試験における限界状態線に到達した後も止まら ず,定常状態に達していない(せん断ひずみが10%未満) と考えられる。また,緩詰めにも関わらず明確に正のダイ レイタンシーが発生していることから,非排水条件下と同 様に,低拘束圧条件下では排水条件下においても緩い砂が 通常拘束圧での密な砂に近い挙動を示すことを確認され た。ただし,現段階では供試体の相対密度に多少バラツキ が存在するため,今後は再現性を取るために種々の条件に よる試験を重ねていく必要がある。

Table.9 試験条件(初期拘束圧の影響)

| 初期拘束圧(kPa) | 5kPa |     | 10 | kPa |
|------------|------|-----|----|-----|
| 排水条件       | 排水   | 非排水 | 排水 | 非排水 |
| 相対密度(%)    | 34   | 39  | 36 | 24  |



(b) 応力比~偏差ひずみ関係(排水条件) Fig.9 緩い砂での初期拘束圧の異なる単調圧縮試験結果

#### 3.2.2 初期間隙比の影響

試験条件,試験結果を Table. 10, Fig. 10に示す。ここで, Fig. 10(a)図は有効応力経路(非排水条件), Fig. 10(b)図は 応力比・体積ひずみと偏差ひずみの関係を示す。Fig. 10(a) の有効応力経路より,中密な砂では緩い砂よりも早く有効 応力の減少が止まり,その後限界状態線に沿って有効応力 が上昇していることが確認できる。また,Fig. 10(b)より中 密な砂では,緩い砂よりも早くピーク強度発生しており, 正のダイレイタンシーもより大きく出ていることが分か る。この傾向は,通常拘束圧条件下と同様の傾向であるた め,低拘束圧条件下でも密度変化によって通常拘束圧条件 下と同様の傾向を示すことが分かる。

| 排水条件                     |                                                       | (a)     |                                                                   | (b)                                          |                                                                                                            |
|--------------------------|-------------------------------------------------------|---------|-------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 初期拘束                     | 王(kPa)                                                | 5       |                                                                   | 5                                            |                                                                                                            |
| 試彩                       | ł                                                     | 緩       | 中密                                                                | 緩                                            | 中密                                                                                                         |
| 相対密度                     | (%)                                                   | 24      | 72                                                                | 34                                           | 70                                                                                                         |
| Stress difference g(kPa) | 10.0<br>8.0<br>6.0<br>4.0<br>2.0<br>0.0               | 2.0 4.0 | ive stress p                                                      | 浸い<br>Dr=24%)<br>中容<br>Dr=72%) 8.0 10. (kPa) | 0                                                                                                          |
| ,d/b                     | (a) 7<br>2.0<br>1.5<br>1.0<br>0.5<br>0.0<br>-0.5<br>0 | 有効応力経   | 当路(非排力)   当社は、「「「」」」   初期指注   初期指注   初期指注   一般   6   strain € (6) |                                              | 5.0 Volumetric strain $\boldsymbol{\varepsilon}_{\mathbf{v}}(\boldsymbol{\mathscr{Y}})$<br>5.0 0.0 0.0 2.0 |



(b) 応力比~偏差ひずみ関係(排水条件) Fig. 10 初期拘束圧5kPa での初期間隙比の異なる単調載荷試験結果

#### 4. まとめ

- 緩い砂,及び密な砂を用いた非排水繰返し載荷試験を 行った結果、初期拘束圧が10kPa以下の低拘束圧条 件下においても、通常拘束圧と同様にサイクリックモ ビリティを伴った液状化現象が確認できた。
- 2) 通常拘束圧条件下と低拘束圧条件下での試験結果を 比較した場合,砂の密度に因らず初期拘束圧が小さい ほど載荷初期における有効応力の減少幅が大きくな る傾向が見られた。しかし,同じ低拘束圧条件下では (5~20kPa),初期拘束圧が砂の挙動に与える影響が 少ないことが分かった。
- 3) 非排水繰返し載荷試験を行った結果,初期間隙比が大 きくなるとひずみが発達しやすく,載荷初期における 有効応力減少幅が大きくなる傾向が見られた。
- 4) 全試験を通して、初期拘束E 5kPa では三軸伸張側の ひずみが発達しにくくなる傾向が見られ、中密な砂に おいては、サイクリックモビリティ挙動時に有効応力 の値が原点付近でマイナスとなる結果が得られた。

5) 排水・非排水条件下での単調圧縮試験を行った結果, 拘束圧に因らずに比較的精度の良い試験結果が得られ,試験の再現性を確認できたと同時に,砂の緩い・ 密な状態を判断する際,間隙比だけでなく拘束圧も判 断の要因となることを確認することができた。

#### 参考文献

- Ye, B. (2007): Experiment and Numerical Simulation of Repeated Liquefaction -Consolidation of Sand, Doctoral Dissertation, Gifu University
- Zhang, F., Ye, B., Noda, T., Nakano, M. and Nakai, K. (2007): Explanation of Cyclic Mobility of Soils: Approach by Stress-Induced Anisotropy, Soils and Foundations, Vol.47, No.4, 635-648.
- Zhang, F., Ye, B. and Ye, G L. (2011) : Unified description of sand behavior, Frontiers of Architecture and Civil Engineering in China, Vol.5, No.2, 121–150.

## 不飽和土構造物の施工時・地震時・地震後の 空気〜水〜土骨格連成有限変形シミュレーション

(Soil-water-air coupled finite deformation simulation of an unsaturated soil structure during construction and during/after a seismic motion

吉川高広<sup>1</sup>,野田利弘<sup>2</sup>

1 名古屋大学大学院・工学研究科社会基盤工学専攻・yoshikawa.takahiro@b.mbox.nagoya-u.ac.jp

2 名古屋大学・減災連携研究センター

#### 概 要

東日本大震災では多数の地盤や土構造物が甚大な被害を受けた.特に河川堤防や造成宅地盛土の崩壊メ カニズム,浦安市の液状化メカニズムの解明に関しては,地下水位の高さや地震前・地震後の不飽和域の 飽和化が重要なキーワードとして挙げられており,飽和土だけでなく不飽和土も扱える理論体系・解析が 必要となっている.そこで空気~水~土骨格連成有限変形解析コードを用いて,簡単な条件を想定して計 算を試みた.今回は,施工段階から地震中,地震後も一貫した枠組で計算できる本解析コードの強みを生 かして,不飽和盛土の築造・地震中・地震後の計算を行なった.その結果,次に示す飽和土では見られな い力学挙動が確認された.(1)築造時は,載荷に伴う粘土地盤の沈下により,盛土内部に閉封飽和域が形成 される.(2)地震後に,排気に伴う間隙空気圧・過剰間隙水圧の減少・消散,平均有効応力の回復が生じる. (3)(2)の盛土内の空気圧・水圧の減少・消散により,地盤から盛土内へ水が流入する.

キーワード:不飽和土,連成解析,静的/動的解析

#### 1. はじめに

東日本大震災では多数の地盤や土構造物が甚大な被害 を受けた.特に河川堤防や造成宅地盛土の崩壊メカニズム <sup>1)</sup>、浦安市の液状化メカニズム<sup>2)</sup>の解明に当たっては地下水 位の高さや地震前・地震中の不飽和域の飽和化が重要なキ ーワードとして挙げられており、飽和土に加えて不飽和土 も扱える理論体系または解析が必要となっている。そこで、 本研究では,野田ら<sup>3)</sup>や吉川ら<sup>4)</sup>が開発した空気~水~土骨 格連成有限変形解析コードを、まず不飽和から飽和までを よりシームレスに扱えるように改良を施した後、それを用 いて簡単な条件を想定して数値シミュレーションを実施 した。今回は、施工段階から地震中、さらには地震後も一 貫した枠組で計算できる本解析コードの強みを生かして、 粘土地盤上の不飽和盛土について築造過程および地震 中・地震後の挙動を調べた。

#### 2. 空気~水~土骨格連成有限変形解析手法の概要

支配方程式のうち,運動方程式,土骨格と間隙水の連成 式,土骨格と間隙空気の連成式を,それぞれ式(1),式(2),

#### 式(3)に示す。

$$\rho \, \boldsymbol{x}_{\mathrm{s}} = \operatorname{div} \boldsymbol{T} + \rho \boldsymbol{b} \tag{1}$$

$$s^{w} \operatorname{div} \boldsymbol{v} + \operatorname{div} \left[ \frac{k^{w}}{\gamma_{w}} \left\{ -\operatorname{grad} p^{w} + \rho^{w} \boldsymbol{b} - \rho^{w} (D_{s} \boldsymbol{v}_{s}) \right\} \right] + n (D_{s} s^{w}) = 0$$
(2)

$$s^{a} \operatorname{div} \boldsymbol{v} + \frac{1}{\rho^{a}} \operatorname{div} \left[ \rho^{a} \frac{k^{a}}{\gamma_{w}} \left\{ -\operatorname{grad} p^{a} + \rho^{a} \boldsymbol{b} - \rho^{a} (D_{s} \boldsymbol{v}_{s}) \right\} \right]$$

$$+ n (D_{s} s^{a}) + \frac{n s^{a}}{\rho^{a} \overline{R} \Theta} (D_{s} p^{a}) = 0$$
(3)

ここで  $D_s$  は土骨格から見た物質時間微分を表す作用素で あり,  $x_s$  は土骨格の変位ベクトル,  $v_s(=D_sx_s)$  は土骨格の 速度ベクトル,  $x_s(=D_sv_s)$  は土骨格の加速度ベクトルを表 す. T は全 Cauchy 応力テンソル, b は物体力ベクトル,  $p^w$ は間隙水圧,  $p^a$  は間隙空気圧を表し,  $s^w$  は飽和度,  $s^a$  は空 気間隙比 (=1- $s^w$ ), n は間隙率を表す. また,  $\rho$ ,  $\rho^w$ ,  $\rho^a$ , は土全体, x, 空気の密度をそれぞれ表し,  $y_w$  は水の単位 体積重量を表す。 Rは空気の気体定数,  $\Theta$  は絶対温度を示 す。なお, 簡単のために, 土粒子と間隙水は非圧縮性, 間 隙空気は圧縮性を仮定している。

今回用いた解析コードでは、一般に行われているような 飽和度 s<sup>w</sup>(または空気間隙比 s<sup>a</sup>)の時間的変化項について、 水分特性式を用いて比水分容量とサクションに置き換え る手法ではなく, 飽和度の時間変化項も未知数として扱い, それを補う形で,水分特性式を式(4)のように連立させる手 法を用いた.

$$f(p^{w}, p^{a}, s^{w}, n, p^{w}, p^{a}, s^{w}, n, \cdots) = 0$$
(4)

ここで, *f* は水分特性を与える関数で, 関数形は用いるモデルに依存する.本稿では,式(5)のような水分特性式を与えた.

$$\begin{cases} a_{\rm es} \left( s^{\rm w}_{\rm max} - s^{\rm w}_{\rm min} \right) S_{\rm e}^{-2} \right\} \\ \left( D_{\rm s} p^{\rm a} \right) - \left( D_{\rm s} p^{\rm w} \right) \\ - \left( \ln S_{\rm e} \right) \left( D_{\rm s} s^{\rm w} \right) = 0 \end{cases}$$
(5)

ここに、 $S_e$ は有効飽和度、 $s^w_{max}$ は最大飽和度、 $s^w_{min}$ は残 留飽和度、 $a_{es}$ は水分特性を表す材料パラメータである. 式(5)の水分特性式の特徴は、有効飽和度  $S_e$ が1(サクショ ン $p^s$ が 0kPa)の時に、 $dp^s/dS_e$ が0になる関数となってい る点であり、van Genuchten<sup>5)</sup>式などの水分特性式とはこの 点で異なる.また、有効飽和度  $S_e$ は、

$$S_{e} = \begin{cases} \frac{s^{w} - s^{w}_{\min}}{s^{w}_{\max} - s^{w}_{\min}} & (s^{w} < s^{w}_{\max} \mathcal{O} \succeq \grave{\Xi}) \\ 1 & (s^{w} \ge s^{w}_{\max} \mathcal{O} \succeq \grave{\Xi}) \end{cases}$$
(6)

で定義する.

有効応力式には平均化骨格応力を用いる。

$$-\boldsymbol{T}' = -\boldsymbol{T} - (s^{w} p^{w} + s^{a} p^{a}) \tag{7}$$

T'は有効応力テンソルであり, T, T'は引張を正にとっている。なお, 土骨格の構成式として, 広範な土の力学挙動を対象にする SYS Cam-clay Model<sup>®</sup>を用いた.

透水係数  $k^w$ と透気係数  $k^a$ の式は、Mualem<sup>7)</sup>モデルに水 分特性曲線として van Genuchten 式 (m=1-1/n)を用い た次の式を用いる.

$$k^{w} = k^{w}{}_{s} \cdot S_{e}^{\frac{1}{2}} \left\{ 1 - \left( 1 - S_{e}^{\frac{1}{m}} \right)^{m} \right\}^{2}$$
(8)

$$k^{a} = k^{a}{}_{d} \cdot \left(1 - S_{e}\right)^{\frac{1}{2}} \left(1 - S_{e}^{\frac{1}{m}}\right)^{2m}$$
(9)

ここに, k<sup>w</sup>sは飽和透水係数, k<sup>a</sup>dは乾燥透気係数である。 初期値・境界値問題に対する解は,式(1)の3式に式(2),

式(3),式(4)を加えた合計 6 式に対し、土骨格の変位成分 3 個と間隙水圧  $p^w$ 、間隙空気圧  $p^a$ 、飽和度  $s^w$ の計 6 個を 未知数として、有限要素法を適用して求める。

#### 3. 解析条件



解析では、粘土地盤にシルトからなる盛土を載荷し、地 震波として規則波(正弦波)を与えて、地盤〜盛土系の挙 動を調べた.

図1は水理境界と空気境界を示す.初期に地下水面が地 表面下 0.5m に存在する地盤を,表1と表2に示す材料1 でつくる.その地盤に同表の材料2の盛土を構築した.表 1は SYS Cam-clay Modelの材料定数・初期値を示す。表2 は水分特性と透水係数 k<sup>w</sup>・透気係数 k<sup>A</sup>に関するパラメー タを示す.表3はその他の物性値を示す。また,図2と図 3には,それぞれ材料1と材料2に関する土の水分特性と 透水・透気係数の関係を示した.盛土の初期飽和度は80%

(初期の間隙空気圧は 0kPa) に設定して,三回に分けて 構築した<sup>8)</sup>. 最終的な盛土高は約 4.5m に設定した. その後, 加速度振幅 100gal,周期 0.5sec の正弦波を地盤底部の水平 方向に 30 秒間入力した後,地震波の入力を停止し,その 他の条件はそのままで,圧密放置計算をした.

盛土施工中は,地盤側方は水平方向を固定,地盤底部を 水平・鉛直とも固定している.地震入力時は,地盤下端の 水平方向を粘性境界<sup>9)10)11</sup>(密度 *p*=2.0g/cm<sup>3</sup>,せん断波速度 V<sub>s</sub>=100m/s),鉛直方向を固定条件にして,側方には周期境 界を与えた.

表1 材料定数および初期値

| 弾塑性パラメー | -9 | 材料1  | 材料2  | 発展則パラメータ |                | 材料1   | 材料2 |
|---------|----|------|------|----------|----------------|-------|-----|
| NCLの切片  | N  | 2.1  | 1.8  | 正規圧密土化指数 | т              | 2.5   | 0.2 |
| 限界状態定数  | М  | 1.5  | 1.2  | 構造劣化指数   | a (b=c=1.0)    | 0.4   | 1.0 |
| 圧縮指数    | λ  | 0.18 | 0.08 | 構造劣化指数   | C <sub>s</sub> | 0.2   | 0.8 |
| 膨潤指数    | κ  | 0.03 | 0.02 | 回転硬化指数   | $b_r$          | 0.001 | 0.3 |
| ポアソン比   | v  | 0.3  | 0.3  | 回転硬化限界定数 | $m_b$          | 1.0   | 0.5 |

| 初期値    |             | 材料1   | 材料2   |
|--------|-------------|-------|-------|
| 構造の程度  | $1/R_0^{*}$ | 2.0   | 5.0   |
| 過圧密比   | $1/R_0$     | 1.5   | 2.5   |
| 応力比    | $\eta_0$    | 0.545 | 0.545 |
| 異方性の程度 | $\zeta_0$   | 0.545 | 0.0   |

表2 土の水分特性と透水・透気に関するパラメータ

| 水分特性曲線                                   | 材料1                  | 材料2                  | 透水係数·透気係数                           | 材料1                  | 材料2                  |
|------------------------------------------|----------------------|----------------------|-------------------------------------|----------------------|----------------------|
| <i>s</i> <sup>w</sup> <sub>max</sub> [%] | 99.0                 | 99.0                 | $k_{\rm s}^{\rm w}$ [cm/sec]        | 1.0×10 <sup>-6</sup> | 2.0×10 <sup>-5</sup> |
| $s^{w}_{min}$ [%]                        | 19.25                | 20.497               | $k_{\rm d}^{\rm a}  [{\rm cm/sec}]$ | 5.51×10-5            | 1.1×10 <sup>-3</sup> |
| a <sub>es</sub> [kPa <sup>-1</sup> ]     | 2.0×10 <sup>-4</sup> | 2.0×10 <sup>-3</sup> | α [kPa-1]                           | 0.051                | 0.102                |
|                                          |                      |                      | n (m=1-1/n)                         | 1.09                 | 1.23                 |

#### 表3 その他の物性値

| 物性値                                     |               |  |  |  |
|-----------------------------------------|---------------|--|--|--|
| $\rho^{\rm s}$ [g/cm <sup>3</sup> ]     | 2.65          |  |  |  |
| $\rho^{\rm w}[{\rm g/cm^3}]$            | 1.00          |  |  |  |
| R [m <sup>2</sup> /sec <sup>2</sup> /K] | 287.042       |  |  |  |
| Θ[K]                                    | 293.15 (20°C) |  |  |  |



図2 材料1(粘土)の水分特性,透水係数,透気係数の関係



図3 材料2(シルト)の水分特性,透水係数,透気係数の関係

4. 解析結果

#### 4.1 盛土施工過程の解析結果

3.の解析条件で述べたとおり,盛土は三回に分けて構築 した.ここでは,三回目の解析結果を例にとって,特に「飽 和度」に注目して説明する.図4は飽和度分布の経時変化 で,(a)は盛土載荷直後,(b)は盛土載荷直後から圧密終了 時までの一例として載荷後約35日の時点,(c)は圧密終了 時を示す.また,図5には,図4と同時刻の過剰間隙水圧 (全水頭)分布の経時変化を示す.



飽和度と過剰間隙水圧の両図を対比しながら考察する. まず(a)載荷直後は盛土直下に過剰間隙水圧が発生する.こ れにより, 地盤から盛土に向かって水が流れ, 盛土内の飽 和度が高くなる.盛土中心の水位が最も高くなるのは、過 剰間隙水圧が盛土中心直下ほど大きな値を示すからであ る. また, (a),(b)のどちらにおいても盛土上部で過剰水圧 が高くなっている箇所があるが,これは新たに載荷した三 段目の盛土に伴うものである. 盛土は初期飽和度 80%で施 工しており、初期間隙空気圧を 0kPa としたため、初期間 隙水圧は、飽和度80%に相当するサクション分だけ負圧と なる.このときの過剰間隙水圧(全水頭)の値は施工済み の盛土部分より高いため、このようなコンター図となって いる.(c)圧密終了時を見ると、過剰水圧がほぼゼロになっ ていることが確認できる. 飽和度に関しては、図1の境界 条件で示した通り、側方部の水理境界を水頭 6.5m で与え ているため、鉛直座標で位置が 6.5m 以下では、その材料 の最大飽和度より高い値を, 6.5m 以上では最大飽和度よ り低い値を示す.一方盛土下部は,盛土載荷に伴う粘土地 盤の沈下により、地下水位まで到達し、「閉封飽和域」が 生成している.地下水位が地表下 0.5m と高い位置にある ため,地下水位より上部にある箇所でも,飽和度は高い状 態になっている.

#### 4.2 地震時応答

本節では、地震中・地震後の不飽和土の応答として特徴 的な計算結果を取り上げる.図 6~図 10 はそれぞれ、構 造、平均有効応力、間隙空気圧、過剰間隙水圧、飽和度の 経時変化を示す.なお構造は嵩張りの程度を表すが、値が 大きいほど構造が高い(嵩張っている)ことを示す.



図7 平均有効応力分布(地震直前・地震後)





図 6~図 10 において, 各図の(a), (b), (c), (d)の記号は, 同時刻のコンター図を示している.以下,「(a)→(b)」,「(b) →(c)」,「(c)→(d)」の三つの過程に分けて, 計算結果を考 察する.

まず、「(a)→(b)」について考察する. 図7を見ると、平 均有効応力が地震前に比べて地震直後では大きく減少し ていることがわかる. 特に盛土に注目するが、この理由は、 図6に示した SYS Cam-clay Model において骨格構造概念 の一つとして表現される「構造」が、地震中にその殆どを 喪失し ( $R^*=1$ )、大きな塑性圧縮を示したからである. つ まり、土要素において、空気の圧縮以外の体積変化は起こ らない中で構造が喪失し、これが弾性膨張を生じたからで ある. これに伴い図8と図9で示す間隙空気圧と過剰間隙 水圧は上昇している. 図 10(b)の飽和度は若干上昇してい るが、この要因のほとんどは空気の圧縮によるものだと考 えられる.

次に、「(b)→(c)」について考察する. 図 7(c)では、図 7(b) の時点で減少していた平均有効応力が回復している様子 が確認できる.図8と図9の間隙空気圧分布と過剰間隙水 圧分布を見ると、(b)では上昇していた間隙空気圧・過剰間 隙水圧が、(c)になると減少・消散しているため、平均有効 応力が回復している.この間隙空気圧・過剰間隙水圧の減 少・消散の理由は、盛土から空気が排出されたためである. 水が排出された可能性も考えられるが、このときの盛土内 の透気係数(およそ 10<sup>-4</sup> cm/sec) は透水係数(およそ 10<sup>-8</sup>cm/sec)に比べて大きいため、空気が先に排出される ことになる.この排気に伴い、間隙空気圧が減少し、過剰 間隙水圧も消散した.つまり,排気は,空気圧のみならず, 過剰水圧も消散させ,平均有効応力の減少を防ぐことが示 されている.一方,飽和度の変化は、図 10(c)を見ると、 空気が排出されたことにより,若干上昇している様子が確 認できる.

次に、「(c)→(d)」について考察する.ここで特筆すべき 点は、図 10(d)において、盛土内の飽和度が全体的に上昇 していることである.これは、(b)→(c)過程における排気 に伴う盛土内の過剰間隙水圧の低下により、盛土と地盤間 の動水勾配が大きくなり、一気に地盤から盛土へ水が流入 したことが原因である.図8(d)と図9(d)の間隙空気圧と過 剰間隙水圧のコンター図を見ると、盛土内への水の流入に よる空気圧と水圧の若干の上昇が確認される.図7(d)を見 ると、地盤から盛土へ水が流れたことにより、地盤内の間 隙空気圧や過剰間隙水圧が下がり、地盤内で平均有効応力 が回復した様子も確認できる.

#### 5. おわりに

新たに飽和度を未知数とした空気~水~土骨格連成有 限変形解析コードを用い,比較的簡単な条件を設定して, 粘土地盤上の不飽和シルト盛土の築造時・地震中・地震後 の挙動を調べた.その結果,次のような知見が得られた.

(1)築造時は,載荷に伴う粘土地盤の沈下により,盛土内 部に閉封飽和域が形成される.(2)地震後に,排気に伴う間 隙空気圧・過剰間隙水圧の減少・消散,平均有効応力の回 復が生じる.また,(3)(2)の後に,盛土内の空気圧・水圧 の減少・消散により,地盤から盛土内へ水が流入する.こ れらの一連の挙動は飽和土では見られない「不飽和土なら では」の挙動である.

東北地方太平洋沖地震の特徴の一つに,大きな余震が比 較的短時間で発生したことが挙げられる.仮に,本震発生 直後に盛土内の飽和度が上記のメカニズムにより上昇し ていたとすると,盛土は内部の飽和度が高い状態で余震を 受けていたと考えられる.今後は,このような余震の影響 も含め,今回の計算結果を足掛かりにして,地盤・構造物・ 入力地震動などの条件をパラメトリックに変えながら,各 種の不飽和土地盤・不飽和土構造物の耐震性評価を行なっ ていきたい.

#### 参考文献

- 1) 地盤工学会:地震時における地盤災害の課題と対策,2011年東日本大震災の教訓と提言(第二次),2012.
- 安田進,原田健二,石川敬祐:東北地方太平洋沖地震による千葉県の被害,地盤工学ジャーナル, Vol.7, No.1, pp.103-115, 2012.
- 3) 野田利弘,中野正樹,吉川高広,浅岡顕:空気~水~土骨格連成 有限変形用いた初期サクションが異なる不飽和土供試体の力学 挙動の再現,第47回地盤工学研究発表会,335,667-668,2012.

- 4) 吉川高広,野田利弘,浅岡顕:不飽和土の非排気・非排水三軸試験の空気~水~土連成有限変形シミュレーション,第47回地盤 工学研究発表会,336,669-670,2012.
- van Genuchen, M. Th: A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, *Soil Sci. Soc. Am. J.*, Vol.44, pp.892~898, 1980.
- Asaoka, A., Noda, T., Yamada, E., Kaneda, K. and Nakano, M.: An elasto-plastic description of two distinct volume change mechanisms of soils, *Soils and Foundations*, Vol. 42 No.5, pp.47-57, 2002.
- Mualem, Y: A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media, *Proc, Water Resour. Res*, Vol.12, pp.513-522, 1976.
- Takaine, T., Tashiro, M., Shiina, T., Noda, T., and Asaoka, A.: Predictive simulation of deformation and failure of peat-calcareous soil layered ground due to multistage test embankment loading, *Soils and Foundations*, Vol.50, No.2, pp.245-260, 2010.
- Joyner, W.B. and Chen, A.T.F.: Calculation of nonlinear ground response in earthquakes, *Bulletin of the Seismological Society of America*, 65(5), .1315-1336, 1975
- Lysmer, J. and R.L. Kuhlemeyer: Finite dynamic model for infinite media,ASCE,EM4,859-877, 1696.
- Noda, T., Takeuchi, H., Nakai, K. and Asaoka, A.: Co-seismic and post-seismic behavior of an alternately layered sand-clay ground and embankment system accompanied by soil disturbance, *Soils and Foundations*, Vol.49, No.5, pp.739-756, 2009

## 補強土壁盛土の固有振動特性を考慮した振動時滑動量の計算方法

豊橋技術科学大学・工学部・建築・都市システム学系 正会員 三浦均也 豊橋技術科学大学・大学院工学研究科・建築・都市システム学専攻 学生会員 チャン・アン・クワン,斎藤裕也 豊田工業高等専門学校・環境都市工学科 正会員 小林睦

岡三リビック株式会社・ジオテクノ本部技術部 正会員 小浪岳治,林豪人

#### 1. はじめに

一般に構造物はそれぞれに固有の振動特性を有し ており、地震動に対する余裕度が同位程度の構造物 でも、地震時における地盤振動(卓越周期)との相 対関係により地震時おける振動応答や被災の程度は 異なったものとなるはずである。地震時における構 造物の振動応答のみならず滑動応答も同様に構造物 の振動特性と地盤振動の相対関係に強く依存すると 考えられる。これまで、盛土などの土構造物の地震 時滑動量を推定するためには剛体一滑動モデル

(Newmark 法)<sup>1,2)</sup>が滑動量の計算に用いられてき たが、構造物の振動特性を無視して構造物を剛体と 仮定するこのモデルでは構造物の振動特性を適切に 考慮して滑動応答を精度よく計算することは限界が ある<sup>3)</sup>。著者ら,質点とバネ,ダッシュポットが構 成する倒立振り子に,スライダーを付加した振動-滑動モデルを提案し,その有用性を示すとともに<sup>4)</sup>, 製作した物理モデルの振動台上における挙動を観察 し,基本的な特性を明らかにするとともに,数理モ デルの妥当性を検証した<sup>4)</sup>。

本研究では、直壁を有する補強土壁であるアンカ ー式補強土擁壁<sup>6)</sup>の地震時挙動とその耐震性を評価 するためにその振動特性(固有振動数や減衰)を考 慮してか滑動量を計算する方法を検討した。まず, 有限要素法を用いることによって,補強土擁壁を多 自由度振動系としてモデル化し、その振動挙動とそ の際に生じる塑性せん断変形を直接積分法により解 析・検討した。さらに,補強土擁壁を振動-滑動モ デルによって1自由度振動系でモデル化した。これ により算定できる地震時滑動量と有限要素法による 塑性せん断変形を比較・検討することにより、計算 手法の妥当性を検討した。

#### 2. 補強土擁壁の有限要素法によるモデル化

多数アンカー式補強土壁工法は直壁を有する盛土を 構築するための補強土工法の一種である。図-1のよ うに複数のアンカーを補強材として用い、鉄筋コンク リート製の壁面パネルとアンカープレートに挟まれた 土塊をアンカーの引抜き抵抗力により拘束補強してい る。同時に、壁面パネルで構成する直壁に作用する土 圧は複数のアンカー群の発揮する引抜き抵抗により支 持している。この場合、引き抜き抵抗は土と補強材の 摩擦力ではなく、むしろ土の受働土圧のメカニズムに よって発揮されるので、盛土材料の剛性や強度が低い 液性限界の低い粘性土のような場合でも直壁を支持す るのに十分な引抜き抵抗と補強土体の安定性が得られ る特徴を有している。



図-1 多数アンカー式補強土壁の構成

Calculation method for the earthquake induced sliding of reinforce soil retaining wall regarding natural frequency Kinya MIURA, TRAN Anh Quang, Yuya SAITO; Toyohashi Univ. of Technology. Makoto KOBAYASHI; Toyota National College of Technology. Takeharu KONAMI, Taketo HAYASHI; Okasan Livic corporation

#### 2.1 有限要素法解析モデル

補強土擁壁の断面図を図 2(左) に示している。 補強領域の寸法は,高さ H、幅 B とし,豪雨などに より背後から地下水が浸入している場合に対応する その水位 Hw とした。補強土領域の背面には有効土 圧と間隙水圧からなる土圧分布を考慮している。

これまで,著者らは地震後の補強土擁壁の調査や, 大型振動台模型実験を実施してきた<sup>7.8.9</sup>。図3は実 験後に観察した補強土擁壁の変状の詳細を示してい る。地震時において,多数アンカーの引き抜き抵抗 が低下して内部安定が損なわれることはほとんどな

Reinforced Soil Retaining Wall В ||\$||\$|| Earth Pressure с, ф  $\rho_t$  $p_{e}(z)$  $H_{w}$  $\nabla$ Η  $\rho_{sat}, \rho_w$ Water Pressure  $p_e(z)$  $\overline{z}$  $p_w(z)$ 補強土擁壁(断面と作用外力) 図2 壁面材 11 T 800 2850 2600 620 410 480 370 9000 注)①②は、発生順位を示す。 壁面材 沈下100mm 沈下152m 沈下119 段差(mm) 最上段:55mm 2段目:50mm 3段目:20mm ラック位置 (南側フレームより) 品には、A&FS 最上段:190mm 2段目:225mm 3段目:300mm 常時 =56 地震時 A =45

●<sub>kc</sub>=45° 主機Mi接角請条件 內部摩擦角 6=30° 水平廣度 kh=0.20 10000 ○ 北側 ○ 南側

図3 大型振動台実験による補強土擁壁の変状(上段,天端平面図:下段,鉛直断面図)

く、補強領域がせん断変形を起こすことによる変状 が地震後の被災調査でも明らかであるので、本研究 では矩形と見なした補強領域を2次元において水平 方向に N分割したスライスを有限要素とし、要素の 鉛直方向とせん断方向における圧縮・伸張変形は小 さいとして無視し、せん断変形のみを考慮した、せ ん断層をモデルとした。よって、水平変位、水平振 動、せん断変形のみを対象として解析する<sup>4</sup>(図4)。



図4 補強土擁壁の有限要素モデル

#### 2.2 解析手法

多自由度振動系におけるマトリクス方程式は、

[*M*](*a*)+[*C*](*v*)+[*K*](*u*)=-[*M*](*ab*)+(*f*) であり、[*M*]は質量マトリクス、[*C*]は減衰マトリク ス、[*K*]は剛性マトリクスである。減衰マトリクス[*C*] はレーリー減衰とし、臨界減衰比 *h* と角振動数 *ω*<sub>0</sub>に より算定した。

このマトリックス方程式は直接積分法で解析して, 振動の時刻暦を計算した。個々の有限要素のせん断 変形は,弾完全塑性モデルで定式化し,直接積分法 の計算ステップにおいて,塑性せん断変形を繰返し 計算によって求めた(図5)。



図5 有限要素の弾完全塑性せん断変形モデル

| 表 1 | 基本的な解析条件 | 4 |
|-----|----------|---|
|     |          | • |

| 項目           | 条件                                                                                            |
|--------------|-----------------------------------------------------------------------------------------------|
| <b>油磁上</b> 腔 | H=10m, K <sub>sm</sub> =0.2,B=5.55m, F <sub>s</sub> =1.667,                                   |
| 桶烟工堂         | $G_0 = 10240 \text{kN/m}^2$                                                                   |
|              | $\rho_{wet} = 1.6 \text{g/cm}^3$ , $\rho_{sut} = 1.9 \text{g/cm}^3$ , $c = 0 \text{kN/m}^2$ , |
| 土質           | φ=26.57°,                                                                                     |
|              | K <sub>a</sub> =0.333                                                                         |
| 計算条件         | N=20, dt=0.001sec, h=0.02                                                                     |
| 基盤振動         | A <sub>b</sub> =0.15g,0.2g,0.25g,0.3g, g=9.80665m/sec <sup>2</sup>                            |
|              | f <sub>b</sub> =2.0Hz                                                                         |

 $K_{sm}=(R_f T)/mg, R_f=(c+\sigma'_v tan\phi)B, T=P_a (P_a:Earth Pressure)$ 

#### 2.3 解析条件

補強土壁の高さ H、安全率  $F_s$ 、滑動余裕度  $K_{sm}$ 、固 有振動数 $f_o$ と土質条件の湿潤密度 $\rho_{wet}$ 、飽和密度 $\rho_{sut}$ 、 強度定数 $(c, \varphi)$ 、土圧係数  $K_a$ を任意の入力値とし、こ れらの条件を満たすように、補強土壁の幅 B、初期 せん断剛性率  $G_0$ を算出した。またモデルの計算条件 として、要素数 N、直接積分法の時間増分 dt、減衰 比 h を定め、基盤振動はサイン波 $(a_b=A_bsino_bt)$ とし、 5 秒間(2Hz, 10 サイクル)振動させた。表1に基本的 な解析条件の値を示す。ここで滑動余裕度  $K_{sm}$  とは、 せん断抵抗力  $R_f$ と水平力 T の差を補強土壁の自重で 無次元化したものである。

#### 3. 補有限要素法による解析結果

#### 3.1. 補強土擁壁の固有振動数の影響

図6は基本条件において解析した補強土壁の振動 挙動を示している。天端(z=10m)における節点の振動



挙動(加速度と変位)と,高さ z=0.25 におけるせん 断応力時刻歴と応力--ひずみ関係を示している。こ の条件振動条件では,剛体モデルでは塑性変形が生 じない。しかし,固有振動数と地盤の振動数が等し い共振条件に対応しているので,振動が増幅される ことにより,断続的に塑性せん断変形が発生して蓄 積され,天端のせん断変形も補強土擁壁の全面側へ 伸びていることが分かる。

図7は基盤加速度の振幅 Ab をパラメトリックに 変化させた場合の補強土壁天端における水平変位の 時刻歴である。Abが大きいほど塑性せん断変形が蓄 積しやすく,残留変位量は大きくなっている。

図8は、補強土壁の振動数 feと入力波の振動数 fe の比の変化に対しての残留変位をスペクトル化して 示している。振動数の比 feftが 0.8~2.0 の範囲で残 留変位が最大となっている。このように,残留変位 は固有振動数に強く依存している。



#### 3.1. 補強土擁壁の固有振動数の影響

図9は地下水の侵入によって生じる応力やせん断 強度パラメータの分布を示している。地下水位以下 で水圧が作用することで有効応力が減少するので, せん断強度が減少する。一方,地下水位の上昇はて 補強土領域の背後に作用する全土圧(有効応力と間 隙水圧の和)を増大させるので,補強土領域内に動 員されるがせん断力は増大する。このように,せん 断強度とせん断力の比で表される安全率 F<sub>s</sub>は、地下 水位の上昇に伴い減少するので,同時に滑動余裕度 K<sub>sm</sub>も低下する。基本条件の安全率 1.667 では、地下 水位が6以上になると安全率は1以下となり、静的 な状態で不安定となる。

図10は地下水がある場合における振動後の壁面 残留変位を示している。補強土壁天端における変形 量にむしろ大きな差は見られないが,地下水がない 場合天端までの高さにわたって全体的に変形するの に対し,地下水がある場合には変形が補強土壁下部 に集中する。これは補強土壁下部では滑動余裕度が 局所的に低下したためと考えられる。

図11は地下水を考慮した場合の補強土壁天端に



おける応答残留変位スペクトルである。地下水がない場合は振動数比が0.8~2.0で増幅が顕著になるが、 地下水がある場合、地下水位の上昇に伴い固有振動 数 f<sub>o</sub>が減少することで増幅域が拡大していく。振動 数比が 2.0 において、地下水がないと残留変位はほぼ 生じないが、地下水があると残留変位が生じること がわかる。



#### 4. 補強土擁壁の振動ー滑動モデル

図12に示す振動-滑動数理モデルは倒立振子と 台座,およびスライダーで構成されている。振子 (Pendulum)と台座(Pedestal)の部分にそれぞれ質点 $m_p$ と $m_d$ を配している。この2つの質点のバランスは、 解析対象とする構造物に合わせて質点パラメータ $\gamma$ ( $0 \le \gamma \le 1$ )を導入することによって調整できる。 $\gamma = 1$  で は倒立振子型に、 $\gamma = 0$  では剛体-滑動モデルになる <sup>1,2)</sup>。モデルには抗土圧構造物が背後から受ける土圧 に相当する水平力Tが作用している。この状態で基 盤の振動(変位 $u_b$ )を受けると、スライダーに発生 する底面せん断力 $F_b$ がせん断抵抗力 $R_f$ を超えるとき にすべりが発生し、水平力Tの作用方向にすべり量 が蓄積されることになる。

以下に,振動一滑動数理モデルにおける運動方程 式ならびに滑動時および非滑動時の運動方程式を示 す。ここで添え字 p は振子(Pendulum)に,添え字 d は台座(Pedestal)に, s はバネ(Spring)に対応するパラ メータであることを示している。これらは時間領域 における非線形な連立方程式になるため,直接積分 法によってモデルの振動一滑動挙動を計算した。

 $m_{p} = \gamma m, \ m_{d} = (1 - \gamma)m$   $\begin{cases} m_{p}a_{p} = T_{p} + F_{ip} - F_{s} & T_{p} = \gamma T, \ T_{d} = (1 - \gamma)T$   $m_{d}a_{d} = T_{d} + F_{id} + F_{s} - F_{f} & F_{ip} = -m_{p}a_{b}, \ F_{id} = -m_{d}a_{b}$   $F_{s} = cv_{s} + ku_{s}$   $R_{f} = \mu mg$ 非滑動時 [v\_{s} = 0, and F\_{s} \leq R\_{s}]

行用的时候
$$[v_d = 0, \text{ und } I_f = R_f$$
  
滑動時 $[v_d > 0, \text{ or } F_f = R_f]$   
 $F_f = R_f$ 



## 5. 調和振動時における振動一滑動モデルによる 解析

図13は基本条件よって調和振動する場合の振動 - 滑動モデルの応答の時刻歴を示している。ここで はモデルの固有周期を2Hzとし、共振条件を満たす 条件で計算した。各図は質量パラメータッが異なる 場合の挙動を示している。剛体モデル(y=0)



図14 調和振動に対する応答残留変位スペクトル



図15 調和振動時における振動-滑動モデル(上) と有限要素法(下)による解析結果の比較

ではモデルの振動が全く増幅しないために,底面せ ん断力が増加せずに滑動しない結果となった。それ 以外のモデルの条件では,加速度振動が増幅するこ とによって底面せん断力が増大する結果となってい る。よって,底面における滑動が断続的に発生し, 変位が蓄積している様子が図に現れている。

これらのモデル条件において,基盤の振動数を連 続的に変化させた計算を繰り返して求めた滑動一応 答スペクトルを図14に示している。図には,対応 する有限要素法(FEM)による解析結果を破線で示し ている。質量パラメータが0<y<1の範囲の値をとる 場合には,質点の数に対応した2つの固有値で振動 の増幅と滑動量の増大が生じていることがわかる。 また,倒立振子型(y=1)では1か所で滑動の増大 がみられている。全体的には,共振条件を含むの範 囲で滑動量が集中的に増大していることが明らかで ある。滑動量の大きさも含めて,FEMモデルの滑動一 応答と最も対応が良いのは倒立振り子(y=1)のケー スであるようであるが,FEMモデルの方がピーク時の 滑動量を大きめに計算されることも分かる。

図15には調和振動時における補強土擁壁の振動 挙動を滑動-振動モデルと有限要素法を用いて,共 振条件の下で解析した結果を示している。12の位 相における加速度や相対変位,底面せん断力をイラ ストで示しているが,比較からわかるように,両者 では,各位相における挙動が良く対応しており,ま た,底面せん断力が赤で示される滑動状態と位相の 関係もよく合っている。

#### 6. 地震時における振動-滑動モデルによる解析

図16では、基盤がインペリアル地震波および+ 勝沖地震波によって基盤が振動する時の振動-滑動 モデルと FEM モデルによる振動-滑動挙動の計算 結果を比較して示している(図示しているのは振動 と滑動による天端変位の時刻歴)。

また,図17には補強土壁の固有振動数を連続的 に変化させた場合に繰返し計算によって得られる振 動-滑動応答スペクトルの時刻歴を示している。図 では,地震波のスケールを変えて計算した数種類の 滑動-応答スペクトルを示している。

両モデルの間では振動―滑動挙動には概ね良い対応がみられるが,滑動量の大きさは,サイン波のケースとは逆に振動-滑動モデルの方が FEM モデルよりも滑動量が大きく計算されるようである。図1



図16 地震時における補強土擁壁の天端変位の時 刻歴;上段,インペリアル地震: 下段,十勝沖 地震

7,18に示す滑動応答スペクトルの比較でも,同 様な傾向がみられる。このことは,対象とする構造 物に応じて質点パラメータのγの値を適切に選択す ることによってより妥当な滑動量の計算が可能にな ることを示唆している。現時点では,γの値を 0.9 とすると対応が良いことが分かっているが,さらに 検討が必要である。



### 7. まとめ

本研究では解析手法を紹介し,その妥当性を検討 したが,得られた結論は以下のようである。

- 補強土擁壁を弾完全塑性 FEM でモデル化し,「滑動余裕度(安全率)」、「固有振動数」をパラメー タとすることで,モデルを設定する方法を提案した
- 補強土擁壁のような比較的たわみ性のある土構
   造物における滑動量は、「固有振動数」と「基盤
   振動振幅」への強い依存性を示すが、応答滑動ス
   ペクトルにより明瞭に示すことができる
- 調和振動と地震動ともに,FEM モデルと振動ー 滑動モデル(V-S モデル)ではよい対応を示した。
   地震時には V-S モデルにおける質点パラメータ yを0.9とすると対応が良いことが分かった
- ・地下水の浸入により、補強土擁壁は滑動に対する
   余裕度(安全率)が減少すると同時に、固有振動
   数が減少することが分かった
- FEM モデルにより、被災事例でみられる「変形 が地下水位以下に集中する」傾向が得られること が分かった
- ・ 共振条件より固有振動数が大きな盛土で地下水 位の影響が大きく、変形は顕著に増大することが 分かった

今後の展望としては,

- 常時微動観測を用いるなど,滑動-振動モデルに 適したパラメータの決定法を検討する必要があ る。
- 本研究では、解析手法についてまとめたが、模型 実験や被災事例との調査・比較を通して、解析手 法の適用性とその限界について検討する必要が ある。
- 道路盛土など,他の土構造物への適用についても 検討する必要がある。

## 【参考文献】

- Newmark, N. M. (1965): 'The 5th Rankine Lecture: Effects of Earthquakes on Dams and Embankments,' Geotechnique, Vol.5, No.2, pp.139-160.
- Newmark, N. M. and Hall, W. J, (1974): 'A rational Approach to seismic design standards for structures,' Proc. of 5th EWCEE, Vol.2, pp.2266-2277.

- 澤田純男,土岐憲三,村川史朗 (1998): '片側必要強 度スペクトルによる盛土構造物の耐震設計法,'日本 地震工学シンポジウム論文集, Vol.10, pp.3033-3038.
- 三浦均也,小濱英司,吉田望,渡邊潤平: 'すべり土 塊および抗土圧構造物の固有振動数を考慮した地震 時滑動量の推定法,'土木学会地震工学論文集, Vol.28, 201, 2005.
- 5) 渡邊潤平,三浦均也,吉田望,小濱英司,西川洋人: '固有振動数の異なる構造物の振動―滑動挙動の振 動台実験による観察,'第 19 回中部地盤工学シンポ ジウム論文集, pp.97-106,2007
- 6) 土木研究センター:多数アンカー式補強土壁工法 設計・施工マニュアル,2002.
- 7) 二木・三澤・辰井:大型せん断土槽を用いた多数アン カー式補強土擁壁の実大振動台実験(その1),第35 回地盤工学研究発表会 (2000)
- 8) 二木・三澤・辰井:大型せん断土槽を用いた多数アン カー式補強土擁壁の実大振動台実験(その2),第35 回地盤工学研究発表会 (2000)
- 9) 二木・青山・小浪・佐藤・辰井:多数アンカー式補強土 擁壁の地震時挙動に関する解析的検討,第36回地盤 工学研究発表会 (2001)

## 地盤の不整形性を考慮した震度ハザードマップへのアプローチ SITE AMPLIFICATION EVALUATION IN THE CASE OF NON-HORIZONTAL AND NON-LINEAR STRATIFICATION

## 古本吉倫1, 桑原 優2

1 長野工業高等専門学校・環境都市工学科・furumoto@nagano-nct.ac.jp

2 岩手大学・工学部

#### 概 要

不整形地盤における地盤震動解析を行うため、傾斜基盤面の上端と下端における地盤モデルから1次元 的に地震動伝達関数を求め、それらを重ね合わせることにより傾斜基盤上の堆積地盤面における2次元地 震動伝達関数を補間推定する手法を開発した。本手法により、従来行われてきた等価線形化法などの地盤 震動解析法の結果をそのまま用いて不整形地盤での地盤震動解析が可能となったうえ、実際の地盤への適 用が極めて簡単な手法となった。具体的な地形を対象に地震ハザードマップを作成したところ、従来手法 にもとづくマップと比べ使いやすさが向上することがわかった。

キーワード: 震度ハザードマップ, 液状化, 不整形地盤, FDEL

#### 1. はじめに

本研究では、不整形地盤を含む地域の震度ハザードマッ プを簡便に作成する方法を考案する。自治体ごとのハザー ドマップを作成することで地域防災に貢献することを目 的とする。

一般に地震動予測は図1のように震源から地表への震動の伝播メカニズムを想定して算出されるが、表層地盤は ボーリング調査(点測定)に基づき数100m四方の独立した 成層地盤メッシュとして扱われる。このため、基盤が傾斜 していて地盤構造に急激な変動がある(=不整形地盤)地 域において予想される波動の反射・屈折は考慮されていない。不整形地盤では、地震波が複雑に反射・屈折を繰り返 すため、理想的な成層地盤の場合と比べ、地震動増幅特性 が複雑になってしまう。すなわち、従来の地震動予測は隣



図1 地震動予測の流れ

接するメッシュ間で起こると考えられるエネルギー収支 の相互作用が考慮されておらず,不整形地盤の予測には精 度的に問題がある。

本研究はこの問題点を解決し,精度の高い地震動予測図 を作成しようとするものである。

#### 2. 従来の地震動推定法

地震動は堆積地盤内で大きく増幅するため、正確な地 震動予測を行うには地盤震動解析技術の高精度化が不 可欠である。しかし、現実には地盤調査には限界があり、 地盤を正確にモデル化すること自体が困難である。この ため、地震被害想定において震度分布図を作成する際に は、地域を数百mないし km 四方のメッシュに分割した



図 2 地盤区分の例(250mメッシュ) (地盤が軟弱なほど暖色に着色)

後,それぞれに地盤モデルを割り当て,地盤震動解析を行う。その際,成層地盤を仮定し,隣接するメッシュとは独立した1次元解析をそれぞれに対して行っている(図2)。

#### 3. 地震動伝達関数の補間推定法

本研究では、基盤が傾斜した不整形地盤において、基盤 から地表までの地震動伝達関数を推定するために、伝達関 数の補間推定法を用いる<sup>1)</sup>。これは成層地盤の伝達関数を、 有限要素モデルを用いて予め求めておいた重みを付けて、 重ね合わせる手法である。すなわち、図2のように傾斜基 盤面の上端と下端における地盤モデルから、それぞれ1次 元的に地震動伝達関数を求め、式(1)を用いてそれらを 重ね合わせることにより、傾斜基盤上の堆積地盤面におけ る伝達関数を推定する。伝達関数を求める際にはFDEL(周 波数依存型等価線形化法)<sup>2)</sup>を用いる。重ね合わせに用い る重み係数は、傾斜基盤上端からの距離と傾斜基盤の長さ をパラメータとし、有限要素法によるパラメトリックスタ ディによりあらかじめ決定しておく<sup>[1]</sup>。

$$\Omega_{x}(\omega) = \Omega_{1}^{C}(\omega) \Omega_{2}^{1-C}(\omega) \dots (1)$$
  
(0 \le C \le 1)

 $\Omega_x(\omega): 推定地点の地震動伝達関数$  $<math>\Omega_1(\omega): 傾斜地盤上端の地震動伝達関数$  $<math>\Omega_2(\omega): 傾斜地盤下端の地震動伝達関数$ C: 重み係数



図2 伝達関数の補間推定式とモデル

ここに、底面から地表面の点x での伝達関数を $\Omega(x)$ ,傾斜 基盤上端の地盤モデルにより得られる1次元の伝達関数 を $\Omega_1$ ,傾斜基盤下端での伝達関数を $\Omega_2$  とする。また、C は  $\Omega_1$ , $\Omega_2$  に対する重みであり、傾斜角 $\theta$ と傾斜部の長さLs, 斜面の頂点からの距離xの関数として次式で与えられる。

 $\ln (C / (1 - C)) = 0.878 + 1.161 (x / Ls) \cdot \ln (\theta) \quad (2)$ 

#### 4. シナリオ地震に基づく地震動の推定

図3に研究の流れを示す。EMPR(強震動予測法)<sup>3)</sup>を 用いて断層パラメータから工学的基盤の地震波を算出す る。その後,FDEL(周波数依存型等価線形化法)を用い





図4 隣接するメッシュによる震度の補間と重ね合わせ



図5 従来法の震度分布図



図6 補間推定法による震度分布図

て基盤面から地表面への地震波の伝達関数を算出するが、 本研究では基盤の傾斜に応じて伝達関数を補間すること により、高精細化したハザードマップを作成する。

また,図4のように東西方向・南北方向それぞれの補間 推定した結果を重ね合わせ,それぞれのメッシュの中心か ら隣のメッシュの中心までを細分化し,それぞれの震度を 表示する。この時,東西方向・南北方向の補間で震度に差 がある場合,2つの結果の平均値をとる。この方法を対象 地域内で隣接するメッシュ全てに繋げていくことにより, 地域全域における震度を表示する。それを地図と重ね合わ せることで震度ハザードマップを作成する。

図5,図6には、長野市直下のマグニチュード7.3相 当の地震を想定した震度マップの例を示す。この地域は、 山の斜面と平地が1つのメッシュ内に存在し、不整形性の 影響が見られる場所である。解析の結果、従来法によるも の(図5)では隣り合うメッシュで震度に大きな差が見ら れる。従来法では、メッシュ内の中心で算出した計測震 度を、そのメッシュの震度として震度予測図を作成するが、 補間推定法(図6)では周囲のメッシュの情報を考慮して メッシュを細分化し、段階的に震度を表示する。これによ って補間推定版では、一つのメッシュ内でも山の方が震度 は小さく、平地の方は震度が大きくなることが段階的に表 示されている。

本補間法において使用する地盤のモデルデータは、従来 法と全く同じであるが、一つのメッシュの震度を計算する 際に、隣接する4つのメッシュの情報を使用するため、従 来法よりも信頼性の高い予測が可能となる。

#### 5. 液状化判定法(FL法)

液状化安全率 Fl は式(3)により求める。本研究では伝達関数 の補間推定法により算出した地震波を用いて、地下 20mまでの地 震時せん断応力比(L)の分布を求める。この際、通常は地表の最大 加速度を用いるが、ここでは、計測震度と対数の関係式で導かれ る実効加速度を用いた。式(4)により、液状化指数 PL を求め、液 状化危険度を判定する <sup>5,6</sup>。

$$F_{L} = \frac{C_{w} \cdot R}{L} \dots (3)$$

$$P_{L} = \int_{0}^{20} (1 - F_{L}) \cdot (10 - 0.5x) dx \dots (4)$$
( $F_{L} \ge 1.0$  の場合,  $F_{L} = 1$  とする)  
R:動的せん断強度比  
Cw: 地震動特性による補正係数  
L:地震時せん断応力比  
PL: 液状化指数

| 液状化による被               | 皮害確率 |                   |     |
|-----------------------|------|-------------------|-----|
| $0 \leq PL < 5$       | 0%   | $5 \leq PL < 10$  | 25% |
| $10 \leq PL < 15$     | 50%  | $15 \leq PL < 20$ | 75% |
| $20 \leq \mathrm{PL}$ | 100% |                   |     |

#### 6. ケーススタディ

図7に、補間推定法を組み込んだ FDEL(地盤震動解析) を使用し、長野市における震度予測を行った結果を示す。 対象地域を人口集中地点、軟弱地盤地点、地盤変化地点の 項目で選定し、補間推定法を組み込んだ FDEL による解析 を従来法と比較した。

解析にあたり, 旧長野市(平成16年)の範囲内の地盤デ ータ<sup>6)</sup>を使用した。入力地震動はマグニチュード7.3相当 の直下型地震を想定し,対象範囲内の全域の工学的基盤面 において同じ値とする。解析結果を比較する地点は,人口 集中地点として三輪,軟弱地盤地点として富竹・篠ノ井, 地盤変化地点として安茂里・松代の5地点を選定した。

地盤変化地点(安茂里, 松代)は、山の斜面と平地が1つ のメッシュ内に存在し,不整形性の影響がもっとも出る場 所である。解析の結果(図7,図8参照)、山を含むメッシ ュにおいて従来法によるものでは隣り合うメッシュで震 度に5.50と4.50の差が見られるが、補間推定版のFDEL ではその差がほとんどなくなり、震度の差は4.80と4.62 になった。これにより、メッシュに関係なく山の形状に合 った震度表示が出来ている。

次に、地域直下のマグニチュード7.3相当の地震を想定して 解析を行い、震度ハザードマップ(図10,図11)及び、液状 化ハザードマップ(図12,図13)を作成した。解析例として、 長野市篠ノ井~松代付近を対象としたものを示す。

従来法によるハザードマップでは隣り合うメッシュで 震度, PL値にそれぞれ大きな差が見られる。これは,メ ッシュ内の中心で算出した地表地震波データを,そのメッ シュの地表地震波データとして,ハザードマップを作成し ているために起こると考えられる。本研究では,補間推定 法を用いることで,波動の反射と屈折の影響を考慮してメッ シュを細分化し,段階的に震度,PL値を表示することが できた。これにより,従来法のように,単純にメッシュの 分割数を細かくしても,補間推定版のように,震度やPL 値を段階的に表示することができないということがわか る。このことから,震度及び,液状化危険度を予測する際 に補間推定を行うことで,地域ごとに不整形性を考慮した 詳細なハザードマップが作成できることがわかった。

#### 7. まとめ

本研究では、不整形地盤を含む地域の震度ハザードマッ プを簡便に作成する方法について考察した。従来法ではメ ッシュの境界で大きく震度が変化する場合があるが、地震 動の伝達関数を補間することにより、震度やPL値が段階 的に変化する状態を表示できるようになった。このことか ら、不整形性を考慮した詳細な震度ハザードマップが作成 できることがわかった。





図10 従来法 震度ハザードマップ (500mメッシュで表示.)



図12 従来法 液状化ハザードマップ (PL 値) (500mメッシュで表示.)



図7 補間推定法を用いて作成した 長野市(旧行政界)の震度マップ

#### 参考文献





図9 補間推定法による解析結果



図11 補間推定法 震度ハザードマップ (500mメッシュで表示.)



図13 補間推定法 液状化ハザードマップ (PL 値)(500mメッシュで表示.)

Vol128, 2005

- 杉戸真太・合田尚義・増田民夫:周波数依存性を 考慮した等価ひずみによる地盤の地震応答解析法に関する 一考察,土木学会論文集 No. 493/II-27, pp. 49-58, 1994.
- Sugito, M., Furumoto, Y. and Sugiyama, T.: Strong Motion Prediction on Rock Surface by Superposed Evolutionary Spectra, 12<sup>th</sup> World Conference on Earthquake Engineering, Auckland, New Zealand, January 2000.
- 4) 宮澤明子, 古本吉倫:地盤の不整形性を考慮した震度ハザー ドマップについて,平成 23 年度土木学会中部支部研究発表 会,2012.3
- 5) 社団法人 日本道路協会:道路橋示方書・同解説V耐震設計編,平成 17年1月14日
- 6)長野県地震対策基礎調査専門委員会:平成14年長野県地震対 策基礎調査報告書

## 特別講演その1

# 「巨大化する想定地震 ~どこまで対応できるのか~」

## 杉戸 真太 教授

(岐阜大学)