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ABSTRACT 
Hollow cylinder torsional shear test is simulated regarded as a boundary value problem employing a 3D 
static/dynamic soil-water coupled finite deformation analysis to investigate the influence of the specimen geometries 
on apparent behavior concerned in practical experiments. 1) As for the specimen geometries, a new evaluating 
method for the non-uniformity inside the specimen is proposed which is suitable for 3D deformation and can 
represent not only the influence of curvature but also the effect of end constraints. 2) A “Perfect path” which means 
the response of a single 3D element with uniform deformation is calculated to investigate the effect of 
non-uniformities on the apparent behavior. As can be seen, only the apparent behavior with thinnest wall thickness 
coincides with the “Perfect path”, which indicates a uniform deformation inside the thinnest specimen. 3) There is a 
sudden relaxation in the deviator stress in the specimen with H/D=2.5, which indicates that even if larger heights of 
specimen can reduce the end constraints, there is still a critical ratio of height and diameter to prevent end failure in 
advance. 4) Even thought the non-uniformity in different geometries is quite different, there seem to be no significant 
influence on the apparent behavior. The reason may lie in the extreme constraint conditions, namely displacement 
control. 

 
Keywords: three-dimension, non-uniformity, specimen geometries, apparent behavior 

 
 

1. Introduction 
 
In practical geotechnical engineering, grounds/soils are 

generally under a complex stress state and subjected to various 
loading conditions. In order to grasp strengthening and 
deformation properties of the ground, many laboratory testings 
were developed and conducted. Among them, the hollow 
cylinder torsional shear test controlled by four individual 
external forces is often employed in order to reproduce the 
actual stress path during in-situ constructions. Via adjusting the 
loading condition, the soil response can be investigated under 
the designated stress path by both monotonic and cyclic shear 
tests. Fig. 1 presents a sketch of the specimen. , ,  and 

 represent the vertical load, torque and external and internal 
pressures respectively, which will result in stresses including 

, ,  and  for every element in the sample and 
four induced strains consisting of , ,  and  in 
each corresponding direction. Details can be seen in 
Appendix-A. 

Since the new experiment apparatus was introduced by 
Height et al. 1), a lot of literatures 2), 3), 4) have discussed 

about the influences of initial anisotropy, intermediate principal 
stress, direction of principal stresses and rotation of principal 
stresses on soil strength and deformation. Meanwhile, as 
indicated by Height et al., the non-uniformities of stress and 
strain would be caused due to both the curvature of the cylinder 
wall and the end constraints and an evaluating index which is 
related to the sample geometry, stress path and constitutive 

 

Fig. 1  Sketch of HCT test and stress state 
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model was defined to quantify the level of non-uniformities. 
Lade 5) conducted a series of hollow torsional experiments with 
different specimen heights to eliminate the effect of friction at 
the end. Sayao and Vaid 6), based on the assumption of Height, 
proposed a more rigorous index for the non-uniformities inside 
the sample and discussed the influence factors including stress 
ratio, specimen height, diameter and wall thickness by the 
assumption of a non-linear constitutive model. 

In order to check the influence of non-uniform deformation 
during numerical calculations, it is reasonable to treat the 
analysis of specimen as boundary value problems (hereafter 
noted as BVPs) instead of one element response. The 
deformation of specimen was described as BVPs under 
axial-symmetric and plane strain conditions by Asaoka et al.7),8) 
and it was found that there were remarkable water migration 
and obvious strain localization and the apparent behavior 
deviated from the one element behavior, which is quite different 
from the response of one element under uniform deformation. 
Xu et al.9) modeled a conventional triaxial monotonic 
compression test under the three dimensional condition utilizing 
the same method and focused on the influence of loading rates 
on the geometry changes. Jin et al.10) dealt with a series of 
cyclic triaxial tests numerically and demonstrated the results by 
changing the cyclic loading frequencies, confining pressures 
and so on. But for the numerical simulation of hollow torsional 
tests, since Gens and Potts 11) presented a quasi-axisymmetric 
BVP by finite element analysis, where they expressed 
non-axisymmetric forces and/or displacements as Fourier series 
in the circumferential directions, to show the non-uniformity of 
stress along the wall thickness, there are few literatures 
concentrating on the simulation of hollow torsional tests. 

Therefore, to succeed the study of BVPs and fill the gap of 
numerical simulation in hollow torsion tests, this paper intends 
to treat the monotonic undrained hollow cylinder shear test as a 
three-dimension boundary value problem to reevaluate 
non-uniformity because of sample geometries and end 
constraints by a more efficient constitutive model---SYS Cam 
clay model12),13) and a dynamic soil-water coupled finite 
deformation analysis code14),15), and to establish a basic thought 
for further monotonic and cyclic loading conditions under more 
complex stress paths. 

 
2. Calculation conditions 

 
The specimen as a benchmark is with a height of 8 cm, inner 

diameter of 4 cm and outer diameter of 8 cm as shown in Fig. 2. 
The division in radial, circumferential and vertical directions is 
5×32×20 with totally 3200 elements and 4032 nodes. For the 
mechanical boundary conditions, all the nodes at the bottom 
surface are fixed in x, y and z directions and a constant angular 
velocity 0.005 rad/s, namely 0.1875%/s is applied to each node 

on the top surface. Except the internal and external pressures, 
there is no additional vertical load, namely =0 in the vertical 
direction at the top surface. Equal external and internal 
pressures are set up. Hereafter, if there is no additional 
specification, the above boundary condition is adopted 
preferredly. Therefore,  is regarded as the intermediate 
principal stress and the coefficient of intermediate principal 
stress b is 0.5. The angle between orientation of maximum 
principal stress and the vertical orientation is constantly 45 
degree. For the hydraulic boundary condition, the entire 
boundary is assumed to be impermeable. 

Typical saturated clay with a relatively low permeability is 
employed in the analysis and the detailed elasto-plastic 
parameters and initial values are presented in Table 1, from 
which it can be seen it is non-structured overconsolidated clay. 
The sample is firstly consolidated to 1467 kPa and then 
unloaded to 294.3 kPa isotropically. Gravitational influence is 
not considered in the analysis and initial values are regarded to 
be uniform in the vertical direction. 

3. Calculation results 
 
3.1 A three-dimension Finite Element Result 
 
First a benchmark result is presented under displacement 

control to demonstrate the distribution of the shear strain, 
excess pore water pressure and overconsolidation. 

Fig. 2(a) indicates the deformation mode (3D shear strain 
distribution) as the apparent shear strain    increases. Note that 
the apparent shear strain is acquired by  = ( + ) ×
Δ /(2 ), where Δ  is measured at the node located at the 
average of inner and outer radius on the top surface, while the 
shear strain in the contour means the Eulerian strain calculated 
from the current configuration. It is revealed that the torsional 
deformation is represented in the vertical direction which is 
similar to that in practical experiments as shown in Fig. 2(b). 
Figs. 3 and 4 indicate the distributions of excess pore water 
pressure and overconsolidation on the cross section of x-z plane 
at different apparent shear strains. As predicted theoretically by 
the linear elastic model1), there is a remarkable non-uniformity 
of shear strain along the radius. Benefiting from the soil-water 
coupled analysis and SYS-Cam clay model, the 
non-uniformities of excess pore water pressure and 

Table 1  Soil parameters and initial conditions 

 

Elasto-plastic parameters  Initial conditions  
Critical state index  M 1.55 Specific volume  v0 1.747 

NCL intercept  N 2.0 Stress ratio  η0 0.0 

Compression index  λ 0.108 Degree of structure 1/ 0∗ 1.0 

Swelling index  κ 0.025 Degree of overconsolidation 1/ 0 5.0 

Poisson's ratio  ν 0.3 Degree of anisotropy  0  0.0 

Evolution parameters    Soil particle density  ρs (g/cm3) 2.65 

Degradation index of OC m 0.2   Coefficient of permeability k (cm/s) 3.7 × 10−8 
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overconsolidation are also newly observed. And all of the 
non-uniformities become severer/wider with the increase of 
apparent shear strain. 

 

3.2 Influence of specimen geometries 
 
As mentioned initially, the non-uniformities in stress and 

strain mainly come from the curvature of cylinder wall and the 
friction due to constraints at the end. To reduce such 
non-uniformities, in the practical experiments the thinner wall 
thickness, the larger inner and outer diameters and the greater 
height are recommended. Before evaluating the influence of 
non-uniformities on the apparent behavior, a response under 
completely uniform deformation is calculated by modelling a 
single 3D eight-node element with unit dimensions to act as a 
benchmark. The boundary conditions are set to be exactly same 

as the right element shown in Fig. 1. Details can be seen in 
Appendix-B. Meanwhile, as shown above now that the 

non-uniformities in shear strain, specific volume change are so 
significant, how to quantify such non-uniformities is essential. 

   

        =0%           =2%            =4% 

   

       =6%            =8%            =10% 

 

 

(a) Simulation result 
 

 

             =0%                =12% 
(b) Experiment result 

Fig. 2  Comparison of deformation mode between  
numerical and experimental results 
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Fig. 3  Distribution of excess pore water pressure 
 at x-z cross section 
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Fig. 4  Distribution of overconsolidation 
 at x-z cross section 
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Height et al.1) defined a coefficient  for each individual stress 
to evaluate the non-uniformity of radial direction:  

= 1( − ) 1 | ( ) − |  

where  ( ) is the individual stress including ,  and 
,  is the average value of the corresponding stress and  

is the standard stress taken as  for  and 
1 2( + )⁄  for  and . Sayao and Vaid 5) proposed 
another evaluating coefficient  viewed from the stress ratio: 

=  

where ,  and  are maximum, minimum and 
average stress ratios respectively.  
However, both of them are proposed based on the 
axial-symmetry deformation, which is not suitable for 
three-dimension analysis. Therefore, a new variable    is 
defined as follows to assess the non-uniformity: 

= ∑ | ( ) − ̅| ∙ ( )∑ ( )  

where  

̅ = ∑ ( ) ∙ ( )∑ ( )  

here, ( ) can be the mean effective stress, deviator stress, 
shear strain and so on within each element, ( ) is the current 
volume for element i, ̅  is the weighted average of ( ) 
taking the volume ratio ( ) ∑ ( )⁄  as the weight 
coefficient and    is the weighted average of deviation 
between  ( ) and ̅.   has the same unit with ( ). The 
smaller   is, the more uniform ( ) is. The ideal uniform 
distribution of ( ), that is ( )=const, results in =0. 

Table 2 gives the calculation schemes for different specimen 
geometries, in which “Thic.” means the cylinder wall thickness, 
“H” and “D” are the height and the outer diameter respectively. 
Take the first column “Thic.” as an example, the height and 
outer diameter of the specimen are kept constant with only 
changing the wall thickness with 0.4 cm, 2 cm and 3.6 cm to 
investigate the influence on non-uniformities and the bold item 
represents the benchmark geometry described in 3.1. The 
remaining columns of “H” and “D” can be interpreted 
analogically. 

 

3.2.1 Influence of wall thickness 
 
Figs. 5, 6 and 7 presents the deviations of mean effective 

stress p′, stress ratio  and shear strain  against the apparent 
shear strain. Once again, the non-uniformities of four variables 
increase as the wall thickness becomes larger, which proves the 
validity of the proposed method. The minimum deviations of 
mean effective stress, stress ratio and shear strain are about 6 

kPa, 0.03 and 4% respectively in Thic.=0.4 cm. The maximum 
ones are over 30 kPa, 60 kPa, 0.25 and 2% respectively in 
Thic.=3.6 cm. The non-uniformity of shear strain increases 
linearly with the increase of apparent shear strain. 

Table 2  Calculation schemes for various specimen geometries 

 

 

Geometries:

Thickness
Height

Diameter

Thic. H D
0.4 cm 2 cm 8 cm
2 cm 8 cm 12 cm

3.6 cm 12 cm 16 cm
⨉ 20 cm 20 cm

Remarks H=8 cm
D=4 cm

Thic.=2 cm
D=4 cm

Thic.=2 cm
H=8 cm

 

Fig. 5  Non-uniformity of mean effective stress p′ 
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Fig. 6  Non-uniformity of stress ratio  
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Fig. 7  Non-uniformity of shear strain  
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Fig. 8 depicts the apparent behavior for three wall 
thicknesses comparing with the “Perfect path” that represents 
the response of one element mentioned at the beginning of 3.2 
including deviator stress ∼apparent shear strain , ∼mean 
effective stress ′ (namely effective stress path), excess pore 
water pressure ∼  and specific volume v ∼ ′. Here,  
and ′ are derived from Eq. (A-3) in Appendix-A, where the 
torque  is the sum of products of the tangential nodal force 
calculated at each node on the top and the corresponding radial 
distance. Apparent shear strain  is taken as the same method 
mentioned above. It should be pointed out here that different 
from  directly measured step by step, ,  and  
which are equal to the confining pressure initially in Eq. (A-1) 
are average values viewing from the entire specimen and 
maintain constant under such mechanical boundary conditions. 
Excess pore water pressure  can be measured utilizing the 
weighted mean pore water pressure inside the elements at the 
top, bottom or average of top and bottom layers and here the 
excess pore water pressure generated at the top is adopted. As 
for specific volume v, the weighted average specific volume of 

each element is taken respect to the current configuration 
volume. The line q=Mp′ means the project of critical state 
surface on the q-p′ stress plane and NCL and CSL represent the 
normal consolidated line and critical state line respectively. 
Except the obvious lower peak in excess pore water pressure at 
Thic.=3.6 cm, there seems to be no else difference between the 
“Perfect path” and responses of three thicknesses. Note that the 
reason that the relationship between deviator stress and 
apparent shear strain differs from one another may be attributed 
to the measurement of apparent shear strain at different average 
radii for various thicknesses. It can be seen from Fig. 9 which is 
the enlarged effective stress path that the thinner the cylinder 
wall is, the closer the effective stress path is to that in “Perfect 
path”. However, the differences among the “Perfect path”, 
Thic.=0.4 cm and Thic.=2 cm are so small that the result is 
acceptable as for Thic.=2 cm, even though the non-uniformity 
is quite large in Figs. 5, 6 and 7. 

 

3.2.2 Influence of specimen height 
 
Fig. 10 presents the deviations of mean effective stress and 

shear strain against the apparent shear strain for various heights. 
From the deviations of mean effective stress, it can be 
concluded that the non-uniformities decreases as the specimen 
height increases, which is in agreement with the experiment 
results in literature 5). Moreover, the results show that the 

Fig. 8  Apparent behavior for different wall thicknesses 
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Fig. 9  Enlargement of effective stress path 
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Fig. 10  Non-uniformity of (a) mean effective stress p′ and 
 (b) shear strain  
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proposed method can deal with the non-uniformity of not only 
the radial direction but also the vertical direction. 

Fig. 11 shows the apparent behavior for four heights 
comparing with the “Perfect path”. Similarly, there are only 
slight differences among the five responses except the one with 
H=20 cm. The deviator stress departures from the others at 6% 
apparent shear strain and then undergoes a sudden decrease at 

about 12% apparent shear strain. From the distribution of shear 
strain (omitted), the torsion failure is observed at two ends. 
Generally, it is thought that in order to eliminate the end friction, 
specimens with greater heights are preferred, which also 
corresponds to the deviation results in Fig. 10. However, the 
end failure shown above illustrates that there should be a 
critical height for the given thickness and diameter to prevent 
the end failure and the height should be chosen carefully in 
practical experiments. 

 

3.2.3 Influence of outer diameter 
 
The deviations of mean effective stress and shear strain 

against the apparent shear strain are demonstrated in Fig. 12. As 
predicted using isotropic linear elastic analysis by Height et al.1), 
the same tendency that the smaller the curvature is, the smaller 
the deviation is can be acquired. In addition, the decreasing rate 
of the non-uniformities is becoming lower and lower until the 
point where even if the outer diameter is large enough, there are 
no significant decreases in the non-uniformity. 

Fig. 13 gives the apparent behavior for four outer diameters 
comparing with the “Perfect path”. From the figure, the only 
difference between the “Perfect path” and responses at four 
various outer diameters is the excess pore water pressure, which 
comes from the wall thickness as clarified in Fig. 9. There is no 
influence of non-uniformity on the apparent behavior as seen 
from Figs. 8, 11 and 13. To sum up the apparent behaviors at 
different wall thicknesses, heights and outer diameters, there is 
almost no difference except excess pore water pressure due to 
wall thickness and the non-uniformities existing inside the 
specimen have no effect on the apparent behavior. One of the 
possible reasons is that the ideally equal torque rate is applied 
on the top for each node in numerical calculations, which 

Fig. 11  Apparent behavior for different heights 
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Fig. 12  Non-uniformity of mean effective stress p′ and shear 
strain  
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Fig. 13  Apparent behavior for different outer diameters 
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represents the perfectly frictional contact and no relative 
displacement between the pedestal and the top surface of 
specimen. However, such a strict constraint condition cannot be 
satisfied precisely in practical experiments, which results in 
slight differences in effective stress path between various 
specimen geometries . 

 
4. Conclusions 

 
A series of monotonic undrained hollow cylinder shear tests 

(HCT) has been carried out numerically taking into 
consideration of the influence of specimen geometries on 
non-uniformities and apparent behaviors. The conclusions are 
as following:  
1) The feasibility of simulating the 3D HCT was proved by 
treating the specimen as a boundary value problem. The 
non-uniformities of shear strain, excess pore water pressure and 
overconsolidation were presented. For the different torque 
applications, the apparent behavior showed no significant 
difference while the specific volume change indicated a slight 
difference due to the variation of end constraints. 
2) As for the specimen geometries, the focus was put on the 
extent of non-uniformity and the influence of curvature and end 
constraints on such a non-uniformity. A new evaluating method 
was proposed for the non-uniformity, which is suitable for 3D 
analyses. It was found that when the cylinder wall thickness 
became smaller, the non-uniformity also decreased 
correspondingly; the same decreasing tendency of 
non-uniformities could also be observed as the specimen height 
became greater and the specimen outer diameter became larger.  
3) In addition, the response of a single 3D element with the 
same boundary conditions as the 3D hollow cylinder, which is 
called “Perfect path” and represented a completely uniform 
deformation field, was computated to investigate the influence 
of non-uniformities on the apparent behavior. The results 
indicated that except the case with thinnest wall thickness, there 
were slight deviations from the “Perfect path”. However, the 
deviations were so small that it could be acceptable. Moreover, 
according to the apparent behavior, there should be a critical 
height for the given wall thickness and outer diameter to 
prevent the possible end failures, even though the increase of 
height could reduce the effect of end constraints. 
 
5. Further study 
 
1) There is no additional vertical load in the calculation and the 
stress path in this paper follows p’=const, b=0 and Pi=Po. 
Simulations under more general stress paths should be carried 
out to extend the constitutive model and verify the constitutive 
response considering principal stress orientations and principal 
rotations.  

2) A cyclic torque loading with torque control or displacement 
control should also be designed to investigate the influence of 
anisotropy on liquefaction and cyclic mobility in soils.   
3) The shear band/strain localization phenomenon observed in 
most practical experiments is anticipated to be represented by 
introducing the initial geometrical imperfection. 
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APPENDIX-A 
 

In practical process, the entire specimen is regarded as a 
single element with stress and strain components derived from 
an assumption of linear elastic constitutive with infinitesimal 
deformation. Eqs. (A-1) and (A-2) present the average stress 
and strain due to non-uniformity, where   are the external 
and internal radius;   are the inner and outer 
displacement; Δ  Δ  are the increment in vertical and 
circumferential direction. 

 

 

= + π −A  

= ++  

= −−  

= 3
2 ( − ) 

(A-1) 

 

 

= −Δ
 

= − u − u−  

= − u + u+  

= Δ −
3 ( − ) 

(A-2) 

 

 

= − ( + + )
3  

′ = −  

= 32 ( − ) + ( − )+( − )+2  

(A-3) 

APPENDIX-B 
In Fig. C-1, the triangle represents the displacement constraint 
in the direction. As can be seen, there are three symmetrical 
planes consisting of plane 1243, plane 3487 and plane 1375; 
constant stresses ,  and  are applied 

correspondingly. The shear stress is represented by applying a 
constant velocity on plane 2486. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. C-1  Boundary conditions for one 3D element with a 
uniform deformation field  
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