降雨浸透を受ける補強土壁の地震時挙動について Seismic performance of multi-anchor wall due to seepage flow

小林睦1,三浦均也2,小浪岳治3,林豪人3,佐藤寛樹4

- 1 豊田工業高等専門学校・環境都市工学科・makotok@toyota-ct.ac.jp
- 2 豊橋技術科学大学・建築・都市システム学系
- 3 岡三リビック株式会社・ジオテクノ本部
- 4 九州工業大学大学院・建設社会工学専攻

概 要

補強土壁の安定性に与える降雨の影響に関する研究では、地下水上昇による性能低下について議論されて いる。一方、耐震性が高いといわれてきたこの種の構造物においても、東日本大震災の被害調査では、終 局限界に至るような大変形を起こした事例が報告されている。これらの被災例では、地下水位が高い状態 にあったことが指摘されている。そこで、本研究では、降雨浸透を受けるアンカー式補強土壁の地震時安 定性能を調べるために一連の遠心模型実験を実施した。その結果、裏込め地盤が十分に締め固められてい なくても、補強土壁の地震時性能は高いことが証明された。この結果より、補強土壁の地震時変形メカニ ズムが明らかになった。すなわち、補強領域が疑似擁壁として挙動することが分かった。また、補強領域 内に挿入した排水補強パイプは、補強材として機能するというよりも、地下水低下により性能を維持する ことが分かった。

キーワード:アンカー式補強土壁,地震,浸透流,遠心模型実験

1. はじめに

従来,補強土構造物は,十分な排水処理が前提となって 設計・施工されており,浸透水の影響は考慮されていない。 しかしながら,補強土壁の長期挙動に関わる諸要因として, 供用期間中だけでなく,それ以前の段階で潜在している問 題が顕在化してくると指摘されている¹⁾。小林らは,降雨 浸透を受けるアンカー式補強土壁の安定性を検証してお り,排水機能の維持管理の重要性を指摘してきた²⁾。

ところで、補強土構造物の耐震性が高いことは、既に広 く知られている³。2011年の東日本大震災における補強土 壁の被災調査においても、調査対象の実に 90%以上が被 災なしと判定され、終局限界に至ったケースはわずか 1% 以下であったと報告されている⁴。ところが、被災した事 例の中には、地下水が高い状態にあったことが指摘されて いる。同様の事例は過去にもあり、2004年の新潟県中越 地震においても補強土壁の変状が報告されている⁵。この ことを受けて、水没した補強土壁の地震時挙動に関する研 究がなされ、裏込め地盤が飽和することによって滑動に対 する安全率が半分程度に低下することが指摘されている⁶。 性能照査型の設計法への移行にあたって、要求性能を満足 させるような照査方法についての議論は途上にある⁷が、 構造物の長期性能を視野に入れて、降雨と地震の作用を複 合的に考えることは重要であるといえよう。

そこで本研究では、浸透流を受けるアンカー式補強土壁 の地震時挙動を調べるために、遠心力場加振実験を実施し た。また、構造物のメンテナンスにおいて、排水機能回復 のために排水補強パイプを地盤中に挿入することをモデ リングし、これが地震時挙動に与える影響を調べた。

2. 遠心力場加振実験

2.1 実験条件

表1に本研究における実験条件を示す。裏込め材には, 豊浦砂を用いており,相対密度を変化させて模型地盤を作 製した。裏込め地盤の乾燥密度は,いずれのケースも過剰 間隙水圧が地震時変形挙動メカニズムに与える影響を調 べるために,道路土工で規定されている締固め度(Dc=95% 以上)よりも小さな値とした。また,一連の浸透加振実験 では,遠心力場における浸透現象に関する相似則⁸を考慮 して,地盤材料の透水係数が 50 倍になるようにハイメト ローズ水溶液を用いた。

2.2 補強部材

図1に、補強部材のモデルを示す。壁面材は、コンクリート製のパネル H1000mm×W1000mm×t100mm を想定し、

衣 1 夫鞅采忤				
実験コード	相対密度 (%)	乾燥密度 (g/cm ³)	排水工	中腹水位 (cm)
D40	40.0	1.445	無	10.2
D40D	40.0	1.445	有	
D40L	40.0	1.445	無	8.7
D65	65.0	1.554	無	10.4
D65L	65.0	1.554	無	8.8

図1 補強部材模型(左:壁面パネル,右:アンカープレート)

曲げ剛性に関する相似則を考慮して H20mm×W20mm× t4mm のアクリル板とした。裏込め地盤側には、圧力計の 表面がパネル表面と一致するようにアクリル板を切削し, 圧力計を貼付している。6mm×6mm のアンカープレート には、中央部に孔を空け ø 0.45mm の鉄製ワイヤでモデリ ングしたタイバーを通して接着している。それぞれの実規 模換算寸法は、アンカープレートが標準寸法である300mm ×300mm であり、タイバーが丸鋼 22mm である。アンカ ープレートの裏込め地盤側にはφ6mm の圧力計を設置し ており,図に示すように凧と同様の仕組みで針金を加工し ている。

2.3 模型地盤作製

本研究で用いた補強土壁模型は、縮尺が 1/50 であり、 実規模換算の壁高は8mである。図2に模型地盤概要を示 す。模型土槽の寸法は H210mm×W250mm×D60mm であ り,前背面は実験中の模型地盤の挙動を詳細に観察できる ようにアクリル板としている。模型地盤の背後には給水タ ンクを設置している。含水比 10%に調整した豊浦砂を、 タイバー設置層毎に敷均し,所定の乾燥密度になるように 締固めた。浸透実験中および加振実験中の模型地盤の変形 を観察するために、各タイバー設置層に給水タンクから 20mm 毎にビーズを設置した。圧力計を貼付した壁面材お よびアンカープレートは、下から2段目と4段目の補強土

層に敷設した。このアンカープレートから給水タンク側に 30mm 離れた位置に間隙水圧計をそれぞれ設置している。 壁面パネル同士を結合するためと裏込め材の流出防止の ために、背後地盤側にセロファンフィルムを短冊状に貼付 している。前背面のアクリル板との境界には、各壁面パネ ルのサイズに合わせてカットしたセロファンフィルムを 貼付し、さらにシリコンオイルを塗布することで潤滑性を

図3 排水補強モデル設置状況

確保した。なお、本研究では地下水上昇による模型地盤の 挙動を観察しやすくするために,あえて壁面パネルの排水 処理は行っていない。

排水工を施す場合は、図3に示すように、W6mm×H4mm ×H115mm の短冊状の不織布を下部 2,4 段目のタイバー 設置層に2個ずつ設置した。

2.4 浸透加振実験

完成した模型地盤を遠心載荷装置に搭載し,50Gの遠心 加速度を付与する。浸透実験は、模型地盤背後の給水タン クに,装置外部から回転しながら流体を供給できるスィベ ルジョイントを介して粘性流体を供給することで行う。浸 透速度が遅いため、給水タンク内の水位上昇速度は厳密に コントロールすることは困難であるが, 平均の水位上昇速 度は0.1mm/minを超えないものとした。加振実験における 代表的な振動台の応答加速度を図4に示す。なお,図中の 加速度および時間は実規模換算値である(以降の図中の時 間は全て実規模換算値とする)。加振周波数 1.0Hz, 加速度

図4 振動台応答加速度

振幅 2m/s²を 20 波与えている。加振のタイミングは, 給水 タンク内水位が上限に達する直前とした。

浸透実験中および加振実験中の模型地盤の挙動を観察, 記録するために,模型土槽を搭載するプラットフォームに CCD カメラを設置し,ワイヤレス送信により,実験フロ アで観察できるようにしている。また,遠心載荷装置ルー フの観察窓上部に高速度カメラを設置し,模型土槽の回転 と同期させて撮影した。

3. 裏込め地盤の相対密度の影響

裏込め地盤の密度が地震時変形挙動に及ぼす影響を検 証するために、ケース D40、D65 における加振前後の模型 地盤の写真を図5 に示す。これらより、地下水位形状が同 様であるにもかかわらず((a),(c))、加振後の模型地盤の 変形量は大きく異なっていることが分かる。両実験ケース における補強土壁模型の変形状況とターゲットビーズの

(a) 加振直前

(b) 加振直後 (D40)

(b) D65図 6 模型地盤の変位量

変位量を図6に示す。これより,裏込め地盤の相対密度が 大きいと,すなわち締固め管理が良くなると,地震時変形 量は抑えられることが分かる。ここで,D40における壁面 の倒れを算出すると,4.5%程度であり,広範囲に孕み出 しが見られるが,壁前面への土砂流出がないので,被災度 判定表 %によると,構造物の安定性に大きく影響しないと 判定される。さらに,締固め管理基準を大きく下回るD65 においても,壁面の倒れは,1.9%と施工管理基準内であ り,被災度判定表では変形・損傷なしと分類される%。こ れらのことから,裏込め地盤内に地下水が存在していても, この種の補強土壁の地震時安定性は高いことが指摘でき る。

4. 地震時変形メカニズム

図6におけるターゲットの変位を精査すると、ターゲットが補強領域内にあるか否で、変位の方向に特徴があることが分かる。すなわち、補強領域背後地盤の変位は鉛直下方が卓越していることが分かる。図7に両実験ケースにおいて、補強領域背後、ならびに支圧板前、壁面裏のターゲットの水平変位量を示す。これより、いずれの実験ケースにおいても、補強領域内のターゲット変位量が同程度であることと、補強領域背後の水平変位量が小さいことが指摘できる。これらのことから、補強領域が一体となって前方

に滑動している様子がうかがえる。一方で、図7に加振中 の間隙水圧計の時刻歴を示す。図では、加振直前の水圧を 基準として、過剰間隙水圧を示している。これより、裏込 め地盤の相対密度が40,65%であるにもかかわらず、補 強領域背後(PPT2)の過剰間隙水圧が負の値を示してい ることが分かる。これよりひとつのユニークな考察ができ る。すなわち、地震動により負のダイレイタンシー特性を 示したのではなく、一体となった補強領域が前方に滑動し ようとすることに対して、補強領域背後地盤が引っ張られ るという現象を表していると考えられる。さらに、図8に、 加振中の壁面土圧および引抜き抵抗力の時刻歴を示す。こ れより、いずれのケースでも、引抜き抵抗力が引抜き力出 る土圧を下回っていることが分かる。相対密度が小さなケ ース D40 では、引抜き抵抗力の最大値が 2.95kN であり、 計算される許容引抜き抵抗力が 32.46kN であることから、 アンカープレートの引抜きが生じていないことがうかが える。

以上のことより,地下水浸透を受けるアンカー式補強土 壁は,適切に支圧抵抗が発揮されていれば,補強領域が一 体となって挙動することが分かった。

5. 排水工の効果

排水補強パイプをモデリングしたケース D40D および地 下水形状を S40D と同様になるように再現したケース D40L について、ケース D40 と加振直前の地下水形状を比

較し,図9に示す。図より,アンカープレート敷設位置の 地下水位が同程度であり,壁面裏の地下水位が排水工によ り壁面裏の地下水上昇を抑制していることが分かる。これ により,引抜き力である壁面土圧の上昇を防ぎ,降雨浸透 による安定性低下を抑制していると考えられる。

この状態で、加振実験を実施したところ、図 10 に示す ようなターゲットの変位が観察された。両実験ケースとも に、図 6(a)と比較して変形が抑えられているが、地下水形 状が同程度であることから、加振による変形も同程度であ ることが指摘できる。すなわち、排水補強パイプの周面摩 擦が、補強土壁の地震時変形を抑制するには至っていない ことが推察される。このことからも、アンカー式補強土壁 が地震動を受けると、補強領域が一体となって挙動するこ とを裏付けたといえよう。さらに、排水機能を回復させて、 地下水位の上昇を抑えることは、この種の土構造物の耐震 性能低下を防ぐことが分かった。特に、東日本大震災後の 補強土構造物の被害調査 %では、被災していると判定され たケースの多くは、地下水位が高い状態であったと指摘さ れているため、長期的な維持管理において地下水の有無を 把握し、排水機能を維持していくことが重要である。

6. まとめ

本研究では、浸透流を受けるアンカー式補強土壁の地震 時性能を調べるために、裏込め地盤の相対密度、排水工の 施工、地下水形状の影響に関する遠心力場加振実験を実施 した。その結果、以下の結論を得た。

- 裏込め地盤密度が、実施工より極端に小さい場合においても、浸透流を受けるアンカー式補強土壁の地震時変形量は、被災判定基準をわずかに上回る程度であった。このことから、この種の補強土壁の耐震性能が高いことが確認できた。
- 2) アンカー式補強土壁の地震時変形挙動を検証したと

ころ,補強土壁背後の過剰間隙水圧が負であったこと と,補強領域内のターゲット水平変位が同程度で背後 地盤より大きかったことから,補強領域が一体となっ て挙動するメカニズムが明らかになった。

3) 排水工を施して壁面裏の地下水位を低位に保つことで、補強材の引抜き力の増加を防ぐだけでなく、補強 領域全体の自重増加を抑制するために、地震時変形を 小さくとどめることが分かった。このことより、長期 的に性能を維持するためには、裏込め地盤内の地下水 の有無を把握し、適切に対処する必要があるといえよ う。

謝辞

本研究は, JSPS 科研費 26420490 の助成を受けたもので す。ここに謝意を表します。

参考文献

- 桑野二郎:補強土壁の長期性能と維持管理 1.講座を始めるに あたって、地盤工学会誌、Vol.62、No.4、pp.62-63、2014.
- 小林睦,三浦均也,小浪岳治:降雨時におけるアンカー式補強 土壁の安定性に関する研究,地盤工学ジャーナル, Vol.8, No.3, pp.477-488, 2013.
- Koseki, J., Bathurst, R.J., Güler, E., kuwano, J. and Maugeri, M. :Seismic stability of reinforced soil walls, Proceedings of the 8th international conference on geosynthetics, pp.51-77, 2006.
- Miyata, Y. : Reinforced soil walls during recent earthquakes in Japan and geo-risk-based design, Earthquake Geotechnical Engineering Design, Michele Maugeri and Claudio Socccodoto(eds), Springer, pp.343-353, 2014.
- 5) 土木学会・平成16年新潟中越地震第二次調査団:社会基盤シス テムの被害等に関する総合調査,調査結果と緊急提言,I報告 と提言,pp.9-13,2004.
- 5) 井澤淳,桑野二郎:水没した補強土壁の遠心振動台実験,ジオシンセティックス論文集,第20巻,pp.53-60,2005.
- 7) 榎本忠夫,中島進,佐々木哲也:分割型壁面のジオテキスタイ ル補強土壁に関する動的遠心模型実験(その1 実験条件および 遠心力載荷時の安定性),ジオシンセティックス論文集,第25 巻,pp.161-168,2010.
- Butterfield, R. : Scale-modeling of fluid flow in geotechnical centrifuge, Soils and Foundations, Vol. 40, No.6, pp.39-45, 2000.
- 9) 土木研究センター:多数アンカー式補強土壁工法 設計・施工 マニュアル,第4版, pp.236-237, 2014