既設盛土の形状に応じた地震時に有効な対策工の数値解析的検討 Assessment of Effective Seismic Countermeasures for established Embankments through Numerical Analysis

酒井崇之¹, 中野正樹¹, 野田利弘², 稲垣太浩³, 北村佳則³, 福田雄斗¹, 工藤佳祐¹

- 1 名古屋大学大学院・工学研究科社会基盤工学専攻・t-sakai@civil.nagoya-u.ac.jp
- 2 名古屋大学・減災連携研究センター
- 3 中日本高速道路株式会社

概 要

近年地震時に盛土が崩壊しており,来る南海トラフ地震に対して,既設盛土の耐震性向上は重要な課題と なっている.また,盛土の地震時の応答は盛土の形状ごとに異なり,盛土形状に応じた対策工をしていく 必要がある.そこで,本研究の目的は,水平地盤および傾斜地盤上に築造された既設の盛土を対象に, GEOASIAを用いて3種類の対策工をモデル化し,地震応答解析を実施することにより,盛土形状に応じた 地震時に有効な対策工を数値解析に検討することである.以下に結論を示す.1)形状に応じて盛土の変形 が異なるため,有効な対策工が変わる.通常の盛土には鉄筋挿入工やのり面保護工が効果的である.傾斜 地盤上の高盛土はのり面保護工が最も有効であった.2)のり面保護工により,地震中に土が除荷挙動を示 しているため,のり面保護工が地震中に荷重を受け持っており,盛土が変形しづらくなる.また,のり面 に生じる加速度も小さくなった.

キーワード:盛土,地震応答解析,耐震

1. はじめに

2004年に発生した中越地震,2007年に発生した能登半 島地震,2009年に発生した駿河湾沖地震において,道路 盛土が崩壊しており,来る南海トラフ地震に対して,既設 盛土の耐震性向上は重要な課題となっている.道路盛土の 耐震性に関する研究は幾つかあり,大木らは,盛土の崩壊 形態に応じた耐震性向上の方法を,遠心模型実験を用いて 提案している¹⁾.また,常田らは,性能を考慮した耐震設 計・補強をより具体化する取組の方向性を明確化しており, 性能規定型の設計のためには,被害形態や規模の定量的評 価が必要と述べている²⁾.また,ジオテキスタイル補強土 の耐震性の評価に関する研究は良く行われているが^{3),4),5}, これらの補強土は新設盛土を対象としていることが多く, 既設盛土の有効な対策工については,力学的にどの対策工 が有効であるのかについての検討は,不十分である.

2007 年の能登半島地震においては、傾斜地盤上の盛土 のみ崩壊しており、水平地盤上の盛土は崩壊していないこ とから^の、盛土の地震時の変状は、造成した地盤の形状に 依存することが考えられる.また、盛土の大きさによって も崩壊形状が異なると考えられ、本研究では、水平地盤 上・傾斜地盤上に建設した盛土・高盛土を対象に地震応答 解析を実施した.この際、無対策の盛土に対しても解析を 行い,対策前後の変形量を比較することにより,どの対策 工が有効であるか数値解析を通して調べた.なお,本研究 で用いた解析コードは,弾塑性構成式(SYS Cam-clay model⁷⁾)を搭載した水~土骨格連成有限変形解析コード GEOASIA⁸⁾である.

図-2 解析全断面

2. 解析条件

本解析で対象としているのは, 傾斜地盤上および水平地 盤上に造成された盛土である. 盛土については, 高盛土と 高盛土ではない通常の盛土の2つを対象としている.つま り,水平地盤上の盛土 (ケース A), 傾斜地盤上の盛土 (ケ ースB),水平地盤上の高盛土 (ケースC),傾斜地盤上の 高盛土 (ケース D) の4ケースである. 図1にケース A~ Dの盛土部を拡大した有限要素メッシュ図を示す.いずれ のケースも天端幅 25m, のり面勾配 1:1.8 の高速道路盛土 を対象としている. それぞれの盛土の盛土高さは、ケース Aが9m, ケースBが12m, ケースCが18m, ケースDが 24m である. なお、ケース B とケース D の地山勾配は 1:4 である.図2にケースAとケースBの解析全断面を示す. ケース C と D については、ケース A、B と類似している ため、割愛する. どちらのケースも側面の影響がないよう に、十分に広い解析領域を設けた.水理境界はいずれのケ ースも同じで,両端,下端は非排水境界で,地表面のみ排 水境界である.この時,常に地表面に水位が来るようにし ているため、盛土も地盤も常に飽和した状態を想定してい る. また, 地震中は, 下端に粘性境界(Vs=700m/s)を設定 し⁹, ケース A, C については, 両端に周期境界, ケース B, Dについては、側方要素単純せん断境界¹⁰⁾を設けた.

表1 に本解析で用いた盛土および地盤の材料定数と初 期値を示す.盛土のパラメータは、高速道路盛土現場で採 取した泥岩を締固めて作製した供試体に対して行った非 排水三軸圧縮試験を再現することにより得られた¹¹⁾.採取 した泥岩は、スレーキングしやすく、作製した供試体は締 固め度 95%である.地盤については、本解析の目的は、盛 土の地震時の変形に着目することなので、地盤が地震でほ とんど変形することがない非常に密な土の材料定数を設 定した.また基盤面の Vs が概ね 700m/s になるように地盤 の材料定数を設定した.比体積と構造は一様均質として過 圧密比は土被り圧に応じて分布させた¹²⁾.

盛土の施工過程は、水〜土二相系弾塑性体として高さ約 1mの有限要素を追加することにより表現する¹³⁾.この時、 通常行われている盛土施工速度、約 0.5m/day となるよう に設定した.また、盛土築造後、圧密による沈下が終了し た段階で、所定の盛土高さになるように要素の追加を行っ た.泥岩は施工中スレーキングしていないため、盛土は乾 湿0回の状態で盛土を造成し,圧密した後にスレーキング した状態を想定したパラメータを入力した.

表1 解析に用いたパラメータ

材料名												
		盛土 地盤			押え 盛土							
弾塑性パラメータ												
圧縮指数	ĩ	0.1	20	0.085	0.105							
膨潤指数	ñ	0.0	010	0.0003	0.0005							
限界状態定数	М	1.6	500	1.430	1.700							
NCL の切片	Ν	1.7	750	2.100	1.895							
ポアソン比	ν	0.3	300	0.300	0.300							
発展則パラメータ												
正規圧密土化指数	т	4.(000	3.000	1200							
構造劣化指数	а	0.2	200	0.300	2.000							
	b	1.(000	1.000	1.000							
	с	1.0	000	1.000	1.000							
塑性指数	CS	0.1	00	0.150	1.000							
回転硬化指数	$b_{\rm r}$	0.1	00	1.000	1.000							
回転硬化限界定数	mb	1.(000	0.200	0.001							
その他のパラメータ												
土粒子密度	$\rho_{\rm s}$	2.620		2.650	2.593							
透水係数(m/s)	k	1.0>	< 10 ⁻⁴	1.0×10 ⁻⁷	1.0×10 ⁻³							
初期値												
		スレーキ	スレーキ									
		ング前	ング後									
比体積	v_0	1.868	1.868	1.400	1.593							
構造の程度	1/ R * ₀	3.800	2.200	1.400	1.000							
過圧密比	$1/R_0$	土被り圧に応じて分布										
応力比	η_0	0.000	0.000	0.000	0.000							
異方性	ζŋ	0.000	0.000	0.000	0.000							

図3に本研究で対象としている対策工を示す.図3には 代表としてケースDの例を示すが、ケースA~Cも同様の 対策工を対象とした.対策工は4つであり、①押え盛土, ②鉄筋挿入工,③のり面保護工,④のり面保護工+鉄筋挿 入工である.鉄筋挿入工については、図-1の橙線、赤線の ように長さ5mの鉄筋を1mピッチで挿入したケースを想 定しており,鉄筋の両端にある2節点の変位が変わらない 束縛条件を課すことにより鉄筋をモデル化した¹⁴⁾.押え盛 土工については,礫を想定した水〜土二相系弾塑性体とし て,高さ1mの有限要素を6回追加することによりモデル 化した¹³⁾.のり面保護工については,コンクリートを想定 した一相系弾性体として,高さ1mの有限要素を追加して いくことによってモデル化した.コンクリートの材料定数 については,ヤング率2.2×10⁴MPa,ポアソン比0.17,単 位体積重量22.6kN/m³とした.なお,本解析は二次元平面 ひずみ条件で行っており,のり面保護工として,のり枠工 (F600)を想定しているため,ヤング率や単位体積重量を曲 げ剛性や重量が等価になるよう値を修正した.なお,本解 析においては,鉄筋やコンクリートの降伏を考慮していな い.つまり,降伏応力を超えても,それを考慮せず解析を 行った.

図3 解析で対象とした対策工

図4に入力地震動を示す¹⁵.入力地震動は,南海トラフ 巨大地震を想定している.本報では基本ケースの地震動を 用いた.また,図5にはフーリエスペクトルを示す.卓越 周期が2~3秒である.

3. 地震時に有効な対策工の検討

図 6~9 はケース A~D の地震後におけるせん断ひずみ 分布を示す.表2に各ケースの地震直後における右のり肩 の水平変位および最も沈下している箇所の沈下量を示す. 無対策では、いずれのケースでものり尻にせん断ひずみが 生じており,高盛土の方が,ひずみが大きい.特に傾斜地 盤上の高盛土は、地盤と盛土の境目に大きいひずみが発生 している. 高盛土は水平変位が 3~4m, 沈下量が 2~3m 程度である.また,通常の盛土はいずれのケースも高盛土 の半分程度の水平変位・沈下量であった. 押え盛土工に着 目すると、押え盛土を設置することにより、のり尻部のひ ずみが軽減されたことがわかる.しかし,高盛土の場合は, のり尻以外の部分, 例えば、地盤と盛土の境目のひずみが 進展している.また、変位および沈下量を見ると、無対策 と比較して 0~10cm しか軽減されていない. これは, 押 え盛土を盛土の第一のり面にのみ設置したため,のり尻は 変形しなくなったが,盛土全体の変形を抑えることができ ないことが原因として考えられる.次に鉄筋挿入工に着目 する.鉄筋を挿入することにより、のり面付近のひずみが 軽減された.また,のり面のはらみ出しも軽減されている. しかし, 高盛土の場合, せん断ひずみが進展している部分 に鉄筋が達していない箇所については、ひずみが抑制され ていない.特に傾斜地盤上の場合は顕著であり,水平変位, 沈下量は30~40%程度しか抑制されていない.一方,通常 の盛土は水平, 傾斜地盤ともに水平変位および沈下量が約 80%軽減されており、鉄筋挿入工は、高盛土でなければ有 効であることが示せた.のり面保護工とのり面保護+鉄筋 挿入工に着目すると、いずれのケースについても無対策と 比較してせん断ひずみが抑制されていることがわかる.し かし、水平地盤の高盛土については、沈下量が30%程度し か減少しておらず,盛土のゆすり込み沈下には効果的では ない.一方,傾斜地盤の高盛土については、地盤と盛土の 境目のひずみやのり尻でのひずみが抑制され,水平変位や 沈下量も60~70%軽減されており、さらに鉄筋を挿入する ことで、変位量が抑えられていることがわかる.また、盛 土については,水平地盤,傾斜地盤とも,沈下量や水平変 位が減少しており、のり面保護+鉄筋挿入工については、 水平変位、沈下量ともに約10cm である.

図9 せん断ひずみ分布 (ケースD)

	ケースA		ケース B		ケースC		ケース D	
	水平	沈下	水平	沈下	水平	沈下	水平	沈下
	変位	量	変位	量	変位	量	変位	量
無補強	1.5m	0.9m	1.8m	0.9m	3.1m	2.8m	4.0m	2.2m
押え盛土	1.5m	0.9m	1.6m	0.8m	2.9m	2.6m	4.0m	2.2m
鉄筋のみ	0.3m	0.3m	0.5m	0.2m	1.6m	1.6m	2.9m	1.5m
のり面 保護	0.2m	0.5m	0.6m	0.7m	2.0m	0.8m	1.5m	1.0m
のり面保 護+鉄筋	0.1m	0.0m	0.1m	0.1m	1.5m	0.8m	1.2m	0.5m

表2 天端沈下量とのり肩水平変位

4. 補強工法の耐震メカニズムについて

地震中の要素の力学挙動や、節点の加速度に着目し、耐 震補強のメカニズムについて、考察する.紙面の都合上、 ケースDのみ示す.図10に着目した要素および節点を示 す.要素1は右のり尻の要素,要素2は地盤と盛土の境目 の要素である.要素1については,押え盛土の有無の違い を比較し,要素2については,のり面保護の有無の違いを 比較する.また,節点1は,第2のり面付近の節点である. 節点については,のり面保護の有無の違いを比較した.

図10 着目した要素,節点

図 11, 12 に要素 1 の地震中の挙動を示す. 図 11 は補強 無しのケース,図 12 は、押え盛土工のケースである. 地 震直前の応力比に着目すると、押え盛土をしたケースの方 が小さくなっていることがわかる. どちらのケースも地震 中に繰返し載荷により、ひずみが進展しているが、押え盛 土をしたケースの方が地震中における軸差応力の増減が 小さい. つまり、地震中の繰返しせん断の振幅が小さくな っている. また、無補強に比べて、地震中の応力比が大き くなっていないため、押え盛土をした場合の方が、ひずみ が進展しにくくなっている.

図11 要素1の地震時の挙動(補強無し)

図14 要素2の地震時の挙動(のり面保護)

図 13, 14 に要素 2 の地震中の挙動を示す. 図 13 は補強 無し、図 14 は、のり面保護をしたケースである。のり面 保護をしたケースについては, 地震初期に過圧密比が増大 していることから、除荷挙動を示すことがわかる.その後、 最大加速度が発生するまでは、ほぼ弾性的な挙動を示し、 最大加速度発生直後に大きくひずみが進展していく.最大 加速度発生後は、繰返し載荷によりひずみが徐々に進展し た. 土が除荷挙動を示しているのは, のり面保護工が, 地 震による荷重を受け持っているために起きている.このた め、土が地震により大きく変形することがなくなる.ただ し、コンクリートに大きい力が作用している可能性がある ことから、コンクリートが圧壊するか否かについて、照査 することをこの解析結果は示唆している.一方,補強無し の場合は、最大加速度発生前から繰返し載荷によりひずみ が進展する.最大加速度発生直後に大きくひずみが進展す るのは同じであるが,のり面保護をしたケースでは,約 7%進展したのに対し、補強無しでは、20%程度親展する.

図 15, 16 に節点 1 における,補強無しのケースとのり 面保護をしたケースの加速度を示す.のり面保護をしたケ ースの方が,発生している加速度が小さくなっていること がわかる.のり面保護をすることにより,盛土内に発生す る加速度が小さくなるため,盛土内の要素の繰返し振幅が 小さくなり,ひずみが進展しにくくなるため,盛土全体の 変形量も小さくなる.

5. 結論

本研究では,水平地盤上・傾斜地盤上に建設した盛土・ 高盛土を対象に地震応答解析を実施した.この際,無対策 の盛土に対しても解析を行い,対策前後の変形量を比較す ることにより,どの対策工が有効であるか数値解析を通し て調べた.得られた結論を以下に示す.

- 押え盛土工は、のり尻のひずみ抑制には効果的であるが、 盛土全体のひずみを抑制することができないため、天 端の沈下量や変位量は無補強の場合とほとんど変わら ない。
- 2)鉄筋挿入工は、のり面付近のひずみを抑制するのに効果 的である.しかし、高盛土の場合、ひずみが進展して いる箇所まで鉄筋が届いていないために、変形が抑制 できておらず、沈下量や変位量は30%程度しか減少し てない.一方、通常の盛土の場合は、90%程度沈下量が 減少しており、通常の盛土には鉄筋挿入工は効果的で ある.
- 3)のり面保護工は、水平地盤上の高盛土の場合、沈下量が 軽減できていないが、傾斜地盤上の高盛土の場合、70% 程度沈下量が減少している.また、通常の盛土につい ては、水平地盤、傾斜地盤上の盛土ともに、変形が抑 制できている.
- 4) 押え盛土工により,のり尻の要素の応力比が小さくなる

とともに、地震時の軸差応力の増減の幅、つまり振幅 が小さくなる.そのため、地震時に発生するせん断ひ ずみが無補強時に比べて小さくなる.

5)のり面保護を実施することで、地震時に盛土内に発生する加速度が軽減され、地震時に発生する軸差応力や、軸差応力の増減量が小さくなる.また、のり面保護を行うことにより、盛土内の土要素が地震中に除荷挙動を示す.つまり、のり面を保護しているコンクリートが、地震中に土に作用する荷重を受け持っており、そのため、のり面保護により盛土が変形しづらくなる.

今後は、この結果を参考に、効果的な工法の組み合わせ を検討し、違う形状や、違う材料、異なる破壊形態を示す 盛土に対し、同様の解析を実施することで、様々な形状の 盛土に対してどのような対策工を実施するのが効果的な のか提案していきたい.また、本解析では、コンクリート や鉄筋の降伏を考慮していないので、補強部材の降伏も考 慮した上で、更に盛土の耐震性について照査していく.

参考文献

- 大木基裕,関雅樹,永尾拓洋,中野正樹(2013):鉄道盛土に おける 5 つの地震時破壊形態の実験検証と合理的な耐震補 強の提案,土木学会論文集 C, Vol.69, No.2, pp.174-185.
- 常田賢一,小田和広(2009):道路盛土の耐震性能評価の方向 性に関する考察,土木学会論文集 C, Vol.65, No.4, pp.857-873.
- 3) 竜田直希,板垣聡,間沼徳,佐々木哲也,杉田秀樹,中根 淳(2006):ジオテキスタイル補強土壁の地震挙動一急勾配補 強土壁の遠心振動載荷試験-,ジオシンセティックス論文 集,第21巻,pp.183-186.
- 4) 蔡飛,竜田尚希,王宗建,辻慎一郎,蘇志満,鵜飼恵三(2006):
 二重構造を有するジオテキスタイル補強土壁の耐震性能:
 数値解析,ジオシンセティックス論文集,第 21 巻,
 pp.183-186.
- Koseki, J. (2012): Use of geosynthetics to improve seismic performance of earth structures, Geotextiles and Geomembranes, Vol.34, pp.51-68.
- b 地盤工学会北陸支部ら(2007):能登半島地震災害技術報告書, pp.91-93.
- Asaoka, A., Noda, T., Yamada, E., Kaneda, K. and Nakano, M. (2002): An elasto-plastic description of two distinct volume change mechanisms of soils, Soils and Foundations, Vol.42, No.5, pp.47-57.
- Noda, T.,Asaoka, A. and Nakano,M. (2008): Soil-watar coupled finite deformation analysis based on a rate-type equation of motion incorporating the SYS Cam-clay model, Soils and Foundations, Vol.48, No.6, pp.771-790.
- Joyner, W. B. and Chen, A. T. F. (1975): Calculation of nonlinear ground response in earthquakes, Bulletin of the Seismological Society of America. Vol.65, No.5, pp. 1315-1336.
- 吉見吉昭, 福武毅芳(2005): 地盤液状化の物理と評価・対策 技術, 技報堂出版.
- 酒井崇之他(2016):スレーキングの進行程度と締固め度の上 昇が泥岩盛土の耐震性に及ぼす影響,第51回地盤工学研究 発表会,投稿中
- Noda, T., Asaoka, A., Nakano, M., Yamada, E. and Tashiro, M.(2005): Progressive consolidation settlement of naturally

deposited clayey soil under embankment loading, Soils and Foundations, Vol.45, No.5, pp.39-51.

- 13) Noda,T., Takeuchi, H., Nakai, K. and Asaoka, A. (2009): Co-seismic and post seismic behavior of an alternately layered sand-clay ground and embankment system accompanied by soil disturbance, Soils and Foundations, Vol.49,No.5, p.739-756.
- 14) Asaoka, A., Noda, T. and Kaneda, K.(1998): Displacement/traction boundary conditions represented by constraint conditions on velocity field of soil, Soils and Foundations, Vol.38, No.4, pp.173-181.
- 15) 内閣府 南海トラフの巨大地震モデル検討会.