火山砕屑物で覆われた斜面の崩壊予測 (Prediction of pyroclastic slope failure)

余川弘至¹,野々山栄人²,浅野憲雄³,武藤大和⁴,中野正樹⁵

- 1 中部大学・工学部都市建設工学科・yokawa@sti.chubu.ac.jp
- 2 防衛大学校・システム工学群建設環境工学科
- 3 中部大学・工学部都市建設工学科
- 4 中部大学大学院・工学研究科建設工学専攻
- 5 名古屋大学院・工学研究科 社会基盤工学専攻

概 要

2013年に発生した伊豆大島の土石流災害では多くの被害が生じた.土石流の発生素因として,火山の噴火 活動により噴出・堆積した火山砕屑物で構成される斜面が,豪雨の影響を受けて,脆弱化し崩壊したため と考えられている.そこで,本研究では,火山地域における地盤災害の被害を軽減するために,土石流災 害の履歴が残されている活火山(焼岳白水谷斜面)を対象とし,現地調査,土質試験,地形解析,写真測量お よび変形解析を実施し,火山砕屑物で覆われた斜面の崩壊予測を行った.その結果,現地調査および土質 試験結果から,火山砕屑物斜面は非常に緩やかに堆積していることがわかり,材料特性として圧縮性が大 きく,せん断性は砂礫材料と同様な力学特性を示していることがわかった.地形解析および写真測量を基 に作成した解析断面を用いた粒子法による斜面の変形解析では,のり尻および勾配変化点から斜面内に向 けてせん断ひずみが蓄積することを確認した.

キーワード:火山砕屑物,斜面崩壊,地形解析,変形解析,粒子法

1. はじめに

我が国は、環太平洋造山帯に属しているため活火山が散 在しており、国土の1/4 は火山地域で占められている.こ の火山地域では、火山噴火以外にも地震や異常気象の影響 によって多発する豪雨を誘因とした土砂災害が発生し、甚 大な被害が発生している.2013年に伊豆大島で発生した 土砂流動(写真1)¹⁾はその一例である.また、表1には、 近年火山地域で発生した豪雨災害の事例を示している²⁾.

斜面の地表面に火山噴火の際に噴出される火山岩およ び火山灰(以下,火山砕屑物と呼ぶ)が堆積しているこれ ら,火山地域の地質は,水を含むと脆弱となる特性を有し ている.

写真1 土石流災害(伊豆大島))

本研究では、火山地域における地盤災害の被害軽減に目 的にし、火山砕屑物で覆われた斜面の崩壊予測を行った.

表1 火山地域における近年の豪雨災害事例²⁾

92 Fr /11	455 mine	連続雨量	最大時間	死者・行方	14 MM
死生中	火音	(mm)	雨量	不明者	地質
1958年9月	狩野川台風豪雨	456	88	2	第四紀火山砂
1982年7月	長崎豪雨	572	187	299	新第三紀火山岩類
1990年7月	阿蘇豪雨	448	119	8	第四紀火山灰
1998年8月	白河豪雨	1,250	90	8	第四紀低溶結火砕流堆積物
1998年9月	鹿部・南茅部豪雨	300	73	-	新第三紀火山岩類
2003年7月	水俣豪雨	429	91	15	新第三紀火山岩類
2010年7月	庄原豪雨	174	91	1	三瓶山火山灰
2010年9月	神奈川県北部豪雨	495	71	0	富士山宝永スコリア
2012年7月	九州北部豪雨	508	108	32	第四紀火山灰
2013年10月	伊豆大島豪雨	824	123	39	第四紀火山砂

2. 研究方法

火山砕屑物で覆われた斜面の崩壊予測を行うために,本研究では,伊豆大島と同様な土石流災害が過去に発生³⁾ している焼岳白水谷斜面(岐阜・長野県境)を研究対象とした.まず,神通川水系蒲田川上流域の精密航空レーザー 測量成果と既存資料を用いて地形解析を実施し,研究対象 地域の土砂災害の危険性判定を行った.次いで,現地調査 を実施し、その時採取した火山砕屑物を用いて、各種土質 試験を実施した.土質試験結果をもとに、数値解析の入力 データとなる火山砕屑物の材料定数を決定した.また、現 地調査の際に、デジタル写真測量を実施し、対象斜面の三 次元形状を取得し、現地踏査結果を踏まえて解析断面を決 定した.最後に、現地調査で得られた情報および土質試験 より得られた情報に基づいて、土の骨格構造の働きを考慮 することができる弾塑性構成モデル⁴⁾を搭載した粒子 法^{5,0,7,8)}を用いて、斜面の変形解析を実施した.

地形解析による研究対象とした焼岳地域の地形 特性の把握

ここでは、焼岳を対象区域として、火山砕屑物層からな る地域での土砂災害の危険性を把握する目的で、火山砕屑 物分布域と斜面災害との関係を求めると同時に、斜面災害 形態と火山砕屑物層分布域について、地形解析を用いて土 砂災害の危険性判定を行った.

3.1 研究対象区域とその特性

本研究で対象とした焼岳は活火山であり,現在も不定期 ではあるが噴煙を上げるような火山である.焼岳周辺には,約2,300年前の火砕流を最新とする新旧の火砕流堆積物分 布層が山麓に広がる地質状況を示し,豪雨時には斜面崩壊 や土石流災害が発生する地域としても知られている(図1 参照)⁹.

図1 焼岳火山砕屑物分布図⁹⁾

研究対象区域に分布する火山砕屑物は,約1,500~2,500 年前の中尾火砕流と称せられる非~弱熔結の火砕流堆積 層であり,層厚は約30m程度と言われている¹⁰⁾.また, 中尾火砕流は大きく3層に分類されているが,当該火砕流 の観察地点では,上記に示した各層が複雑に混在するよう な地質分布を示している.周辺地区には,中尾火砕流以外 にも,古期の火砕流や熔岩と基盤岩類である花崗岩類・堆 積岩類などが複雑に分布している.このように複雑な地層 特性を示す火山砕屑物分布地域では,相対的に斜面勾配が 急峻である谷壁で小崩壊が多発しており,このような事象 が土砂災害を発生させるような大規模崩壊と何らの関連 があると考えられる.

火山砕屑物の中でも火山に近い位置に分布する「火砕流 堆積物」は、非~弱熔結で構成材料も細~粗粒の粒度特性 を示す土砂地盤として特性が大きく異なるが、全般的に粗 粒土主体で透水性・保水性がよく、比較的軟質であること が多い.このような土質特性から、豪雨時や融雪期など表 流水・浸透水などの影響で脆弱化し、斜面崩壊を生じるも のと考えられる.よって、火山砕屑物分布域の斜面崩壊と 土砂災害の関係を地形解析から求め、斜面災害危険区域の 特性を把握した.

3.2 地形解析

地形解析では、国土交通省神通川水系砂防工事事務所お よび岐阜県が所有する航空レーザー測量結果(「DEM」デ ータ、1~2mメッシュデータ)を利用し、GIS ソフトで山 地傾斜量図を作成した.地形解析での傾斜量は、斜面崩壊 が発生しやすいと考えられる傾斜角 40~60°を中心に行 い¹¹⁾、山地内の急崖部を特定した.

(1) 崩壞地分布

当該地域は、岐阜県によって、航空写真を用いた広域の 崩壊地分布が整理されている.この崩壊地分布と地形解析 図などを用いて、地形特性と崩壊地分布の検討を行った.

(2) 山地侵食量解析

山地の侵食量を把握するためには,新旧2種の地形デー タを重ねることで可能となる.研究対象地域では,10年 ほどの時間経過を経た2種の航空レーザー測量成果を用 いて,2種の地形標高データを同座標軸上で点群データと して展開し,2種の地形標高データの差分を侵食量と見な し,解析図として利用した¹².

3.3 地形解析のまとめ

火山砕屑物分布域と斜面崩壊との関係について,対象地 域の 1mDEM を用いて地形解析を行った.図2に斜面傾斜 角分布と火砕流堆積物分布・崩壊地分布を,図3に山地の 侵食特性・分布を解析した結果を示す.また,以下にその 特徴をまとめる.

図2 山地傾斜角と崩壊・火山砕屑物堆積分布

図3 山地侵食量図

- 図2より、当該地域の火砕流堆積物や風化した砂岩
 等の比較的軟質な岩盤・固結地盤分布域では、帯状に狭長な崩壊地の分布が認められる.他の地質分布域では、そのような特徴的崩壊地は観察されなかった。対象区域に分布する帯状崩壊地は、火砕流堆積物分布域からなる斜面裾部から斜面傾斜角45°以上の急傾斜部までの斜面内に形成されていることが確認できる。このことは、帯状の崩壊地は、比較的軟質な特性を示す火山砕屑物が最初に小規模崩壊として発生し、その小規模崩壊地頂部の緩みが影響して斜面上方へ崩壊が進行・長大化していく特徴を示すと考えられる。
- 2) 図3より、本流との合流部付近では、火砕流堆積箇 所で大きな侵食が生じていない.しかしながら、火 砕流分布域の上方斜面に青色で示す小規模侵食箇所 が点在し、何らかの斜面変状が進行していることが 分かる.

4. 焼岳の現地調査

4.1 現地調査ならびに試料採取

現地調査場所の状況を,写真2は採取場所の遠景,図4 は写真2の撮影位置をそれぞれ示す.現地調査は,踏査と 攪乱・未攪乱試料の採取を実施した.踏査では,地盤の材 質,植生,勾配,硬度を調査し,攪乱・未攪乱試料の採取 が可能な場所の選定を行った.また,試料採取では自然状 態での詳細な物性値を把握するため,未攪乱試料の採取が 必要になるが、今回対象とした試料は、吸水性に富み脆弱 化する材料であり、ブロックでの試料採取が困難であった. よって、原位置でのカッターリングの押し抜きによる試料 採取を実施した.写真3はカッターリング打ち込み時の様 子、写真4は押しぬき後の未攪乱試料の状態をそれぞれ示 している.採取ができた未攪乱試料は、全部で8個である. 写真5に未攪乱試料を採取した場所および試料番号を示 す.

4.2 硬度計貫入による貫入抵抗の測定

試料採取箇所, 試料採取場所付近の上流側(火山礫および火山礫に挟まれた箇所)および下流側(崩壊跡地)にて 土壌硬度計による貫入抵抗の測定を行った.写真6および 写真7に土壌硬度計の測定箇所を示す.

写真2 採取場所全景

図4 写真2撮影地点 国土地 理院地形図に加筆

写真3 試料採取状況

写真4 未攪乱試料

写真5 未攪乱試料の採取箇所

写真6 土壌硬度計の貫入による火山礫および火山礫に挟まれ 箇所(上流側)の計測箇所

写真7 土壌硬度計の貫入による試料採取箇所および崩壊跡地(下流 側)の計測箇所

表2に硬度計貫入による貫入抵抗の計測結果を示す.上 流側の計測箇所について,火山礫は強度が高いが,火山礫 に挟まれた箇所では硬度指数20mmと試料採取箇所と変 わりがない数値を示した.このことから,この斜面は鉱物 の種類によって支持強度が著しく異なり,強度が低い箇所 は支持強度および粘着力が低いため,豪雨による浸食を受 けやすく崩壊もしやすい.そのため,この斜面は,万が一 この箇所が豪雨によって崩壊を起こした場合に,写真6か ら分かるように寺勾配の構造をしているため,その崩壊箇 所になだれ込むように火山礫も崩壊を起こし,その結果, 斜面崩壊が起きる可能性がある.また土壌硬度計では計測 される硬度指数28~29mmを硬盤と規定していることを 考えると,調査対象とした斜面は,硬盤とは言えず斜面全 体が不安定かつ崩壊しやすい斜面と考えられる.

一方,試料採取箇所および崩壊跡地(下流側)では,火山 礫はなく強度が低い結果であった.斜面の表面は粒径が小 さい土砂が堆積していた.これは上流側に堆積した火山礫 が風化,移動を伴って細粒化したものが下流側に堆積した 可能性が考えられる.

また,図5に地形調査の結果をまとめた.図5に示すように地層構成については、3層からなる地盤であった.採 取層の下側に古期火砕流,採取層を覆うように新規火砕流が堆積し,採取層は下流に向かうにつれて、徐々に細粒化していることがわかった.

表2 土壌硬度計による貫入抵抗の測定結果

	火山	火山	礫に	試料採取箇所						崩壊		
	· 傑 (上流 側)	快ま	れた 所	1	2	3	4	5	6	7	8	跡地 (下流 側)
指数 (mm)	46	20	17	20	1	7		8		1	1	9
強度 (kPa)	×	616.8	396.2	616.8	39	6.2		96.1		16	0.8	115.7

図5 現地調査結果

5. 火山砕屑物の物理・力学特性の把握

5.1 火山砕屑物の物理特性

火山砕屑物の物理特性を把握するために、土粒子の密度 試験(JIS A 1202)、土の最小・最大密度試験(JIS A 1224)、 粒度試験(JIS A 1204)を実施した.自然含水比および乾 燥密度については、試料採取の際に未攪乱で採取した試料 を用いて、標準圧密試験時にカッターリングから圧密リン グに移す際に質量を計測することで求めた.

表3に本研究で採取した試料,伊豆大島で採取された試 料 13),14)(以下,伊豆大島砂と呼ぶ)の各種物理試験結果を示 す. また,図6に2試料に加えて,火山砕屑物の一次,2 次堆積物である富士火山灰¹⁵⁾の粒度試験結果を示す.物理 試験の結果から, 今回採取した試料の粒度特性に着目する と、富士火山灰、伊豆大島砂の中間に位置する物性値を示 しており、土粒子密度 ρ_s および乾燥密度 ρ_d では、伊豆大島 砂に比べ低い値を示した.これは,礫分の量が伊豆大島砂 より多いことや海洋性火山と内陸性火山の違いによる土 を構成する鉱物の差が影響しているものと考えられる.ま た,今回採取した試料は,伊豆大島砂と同様に相対密度が 負の値を示した.これは、最小乾燥密度 ρ_{dmin} より原位置の 乾燥密度_{Pd}が低い事を示しており,原位置での地盤は間隙 が大きいことが考えられ,室内試験での再現が困難である ほど原位置での地盤が構造を有しており,緩やかに堆積し ていることを示している. 攪乱試料を用いて力学試験を実 施する際は,供試体の作製方法を検討する必要があること がわかった.

表3 物理試験結果

		火山性堆積物		
		採取試料	伊豆大島砂6,7)	
自然含水比	$w_n(\%)$	10.1	16.6	
土粒子の密度	$\rho_s(g/cm^3)$	2.64	2.76	
乾燥密度	$\rho_d(g/cm^3)$	1.27	1.39	
最大乾燥密度	ρ_{dmax} (g/cm ³)	1.79	1.91	
最小乾燥密度	ρ_{dmin} (g/cm ³)	1.35	1.39	
相対密度	$D_r(\%)$	-29.2	-24.1	
礫分	(%)	28.7	5.0	
砂分	(%)	56.5	80.0	
細粒分	(%)	14.8	15.0	
最大粒径	(mm)	19.0	2.0	
平均粒径	D ₅₀ (mm)	0.43	0.25	
均等係数	U_c	16.5	12.2	
曲率係数	U_c	1.40	1.96	
細粒分含有率	Fc(%)	14.8	15.0	
工学的分類		S-F	SF	

5.2 火山砕屑物の力学特性

火山砕屑物の力学特性を把握するために,標準圧密試験 (JIS A1217),突き固めによる土の締固め試験(JIS A 1210), 三軸圧縮試験を実施した.以下にその結果を示す.

標準圧密試験は、未攪乱状態の試料を用いて実施した. 図7に標準圧密試験の結果を示す.図7より、土の圧密特性である圧縮指数 C_c は0.18、膨潤指数 C_s は0.012を示した.一般的な粘土の圧縮指数 C_c は $10^0 \sim 10^{-1}$ オーダーで、砂質土の圧縮指数 C_c は $10^2 \sim 10^3$ オーダーであることから、砂分を 50%以上も含むにもかかわらず、比較的圧縮性の高い材料であることがわかった.つまり、圧密降伏応力を超えるような応力を受けたとき、この材料は、粘土と同等程度の大きな体積変化を生じてしまうことを示している.

締固め試験は、A-b法(乾燥法・非繰り返し)で実施した. 図8に締固め試験の結果を示す.高含水比状態(15~18%) で作製した供試体では、試験直後の供試体上部に水が溜まってしまった.これは、供試体が砂質土と同様の単粒構造となり、突き固めの振動によって水が供試体上部に上昇し、 土中の粒子と水が分離したことが考えられる.低含水比に 調整した供試体では、含水比0~9%の間で乾燥密度が下がっていることがわかった.このことから、緩い密度の供試体を作製する際は、絶乾状態よりも多少湿潤させることで、 三軸圧縮試験に利用するための再構成試料の作製が可能と考えられる.

三軸圧縮試験は、4.75mm 以下に粒度調整したせん頭粒 度試料を用いた.試験は相対密度の異なる3ケースを実施 し、拘束圧は98.1、294.3kPaとした.各ケースの試験条件 を表4に示す. Case2は、未攪乱試料と同様に相対密度が マイナスになるケースであり、Case1および Case3は、緩 詰め状態を想定したケースである.実験で用いる供試体は 全て直径 φ=50mm、高さ h=100mm とし、負圧法を用い、 Case1 および Case3 は乾燥堆積法、Case2 は湿潤堆積法で 作製した.供試体を試験機にセット後、通水を十分な時間 行い、背圧を上昇させたのに、等方圧密を行った.その後、 両ケースとも、排水量~時間関係から圧密終了判定後に非 排水単調せん断試験(CUbar 試験)を実施した.

表4 三軸圧縮試験の試験条件

ケーフ	र	Case1	Case2 Case3		
拘束圧	[kPa]	98.1	294.3		
相対密度	[%]	10.4	-8.9	30.9	

図9に三軸圧縮試験の結果((a)軸差応力~せん断ひずみ 関係,(b)有効応力経路を示す.(a)では,明瞭なピークが みられず,いずれのケースについても単調増加した.(b) についても,有効拘束圧によらず,平均有効応力p'が一 度減少した後,平均有効応力p'は増加に転じ,それに伴 って軸差応力 q も増加する過圧密土のような挙動がみら れた.供試体の状態によらず,有効拘束圧が低いケースで は,高いケースに比べて,極端に強度が低い結果となった. このことから,相対密度が負になるような緩い状態であっ ても,十分な拘束圧が作用していれば,斜面は壊れず,一 方,拘束圧がほとんどないような斜面表層ではより崩れや すいことを示唆している.

5.3 火山砕屑物の力学特性のまとめ

本研究で採取した火山砕屑物は、物理特性から判断する と砂礫材料に近い性質であり、他の火山性堆積物に比べて 粗粒分が多い. 原位置での乾燥密度は最小密度試験で得ら れた最小乾燥密度より小さく、室内試験で再現が困難であ るほど緩やかな堆積状態であることが分かった. また、圧 縮性、せん断性のいずれの側面も砂礫材料を同様な力学特 性を示していることが把握できた.

6. 粒子法による斜面の変形解析

粒子法(SPH法)^{5.0}を用いた火山砕屑物斜面の変形解析 を実施した結果についてまとめる.本研究では、火山砕屑 物で構成される斜面の変形だけでなく、地下水の挙動、将 来的には降雨による挙動を再現するため、土の構成モデル を用いて地盤の力学挙動を再現でき、また、間隙水の運動 も同時に解くことができる水~土連成解析¹⁶⁾を用いて解 くこととした.

6.1 材料定数

ここでは、土の骨格構造概念に基づいて、焼岳白水谷斜 面に堆積した火山砕屑物の力学挙動を把握し、その材料定 数を決定する.図10,11に、5.2の図7および図9で示し た標準圧密試験結果、非排水三軸試験結果および弾塑性構 成モデルによる再現結果を併せて示す.また図11には、 再現解析中の過圧密および構造の推移を示す.なお、図 10では、プロットが実験結果、実線が解析結果であり、 図11では、太線が実験結果、細線が解析結果である.

図 10, 11 より,解析結果は実験結果を概ね再現できている.有効応力経路に着目すると,平均有効応力 p'が一度減少した後,平均有効応力 p'は増加に転じ,それに伴って軸差応力 q も限界状態線に沿って増加する過圧密土のような挙動を再現できている.表5,表6に再現により得られた材料定数と初期値を示す.今回採取した火山砕屑物は,初期過圧密比を有していることがわかる.

表5 材料定	 数
パラメータ	値
圧縮指数	0.088
膨潤指数	0.010
限界状態定数	1.50
NCL の切片	1.92
ポアソン比	0.3
正規圧密土化指数	0.25
構造劣化指数	4.0
構造劣化指数	0.7
回転硬化指数	0.0
回転硬化限界定数	0.0

表6 初期值

	拘束圧	比体積	構造の程度	過圧密比	鉛直応力
Case1	98.1kPa	1.91	5.0	76.3	9.81
Case2	Case2 294.3kPa Case3	2.00	25.0	120.4	9.81
Case3		1.81	4.5	247.7	9.81
標準圧密 試験	-	2.03	2.0	14.5	4.9

6.2 解析対象断面

解析断面の取得には,現地で撮影した写真を用いてデジ タル写真測量を実施し,斜面の三次元形状を作成した.得 られた三次元形状から,CAD ツールを介して解析断面を 作成した.図13に現地踏査の結果ならびに解析対象断面 (赤線部分)を示す.なお,図13に示すように,斜面上 部には植生があることが確認できる.写真測量により三次 元形状を把握する場合,撮影された写真をもとに三次元形 状を取得するため,斜面上部については,植生の影響で, 正確な斜面形状を捕捉することができなかった.そこで, 植生のある箇所については,現地調査の結果を考慮し,斜 面形状を推定した.図14に推定した解析断面(断面 A-A') を示す.

6.3 解析条件

材料定数について、試料採取層(領域①)は、6.1 で得 られた値(表5)を採用する. 試料採取層を覆う新期火砕 流層(領域②)は、植生に覆われていることに加えて、浸 食が進んでいることや樹根の影響による見かけの粘着力 を考慮して,簡単のため試料採取層(領域①)と同様の材 料定数とした.また,試料採取の下位に位置する層につい ては, 礫分の含有量が多く, 上流側では直立した壁面を有 していたことから、変形し難いと考え、解析上では変形し ない壁として取り扱った. 斜面をモデル化するに当たり, 本研究では,深さ方向に均質な初期構造および初期比体積 を有する飽和地盤とした. 初期過圧密比については初期構 造および初期比体積の値から算出した(表 7). 初期応力 は、土被り圧に対応する等方応力を与えた、地盤作製後、 図中の掘削領域(領域③)を掘削して斜面形状を模擬した. 掘削方法については,該当の計算点を瞬間的に取り除き, 斜面表面に作用している応力を外力として作用させ,除荷 を模擬した.また、降雨履歴については、降雨を直接モデ ル化せず,危険側を想定して,完全飽和した斜面と仮定し て計算を実施した.

表7 初期値

領域	比体積	構造の程度	過圧密比	
1.2	1.91	5.0	5.7	

6.4 解析結果

図 15 に得られた法肩の沈下量の時刻歴を,図 16 に得られた地盤中の過圧密 R および構造 R*の推移を,図 17 に斜面全体の速度ベクトル分布を,図 18 に得られたせん断ひずみの蓄積量分布をそれぞれ示す.

図 15 に示すように, 斜面上端部の沈下量に着目すると, 掘削直後の状態から, 沈下するものの, 斜面は大変形, 崩 壊することなく, 時間の経過とともに収束する傾向にある ことが確認できる. 図 17 および 18 に示すように, 斜面中 腹の表層から内部にかけて, 変形していること, せん断ひ ずみの蓄積が確認できる. しかしなら, 危険側を想定した 飽和斜面にもかかわらず, 火山砕屑物斜面の崩壊挙動にみ られる表層崩壊やその後の後退性崩壊の再現には至らな かった. この原因として, 図 16 示すように, 高位構造を 有していた斜面が, 掘削後に構造は徐々に喪失する (*R** →1) が, 斜面全体として過圧密が完全に解消 (*R*→1) に 至っていないことが考えられる.

6.5 変形解析のまとめ

骨格構造概念に基づいて実施した土質試験結果の再現 により,採取試料の材料定数およびその初期値を決めるこ とができた.また,現地で撮影した写真を用いたデジタル 写真測量により,斜面の三次元形状を作成できる可能性を 示した.その斜面形状をもとに実施した粒子法による変形 解析では,斜面内にせん断ひずみが蓄積したものの,火山 砕屑物斜面の崩壊形態である斜面の表層崩壊とその後の 後退性崩壊といった崩壊形態を再現するには至らなかった.

7. まとめ

本研究では、火山砕屑物斜面の崩壊予測のために、現地 で採取した試料から材料定数を決定し、またデジタル写真 測量の結果ならびに現地踏査結果に基づいて解析断面を 決定した.これらの情報を解析の入力値として用いて粒子 法による斜面の変形解析を実施した.以下に、本研究で得 られた知見を示す.

- 地形解析により、焼岳白水谷周辺地域の新期の火山 砕屑物分布域には、狭長な帯状を示す崩壊地の存在 が明らかになった.このような小規模斜面崩壊が進 行すると、斜面全体が不安定となり大規模な崩壊が 発生すると考えられる.ここで、このような帯状に 形成される崩壊地の特徴は、花崗岩の風化まさ土地 帯にも観察される.このような地域の災害として「長 野県木曽郡南木曾町土石流災害」があり、火山砕屑 物のみならず、火山性の特殊土地域につながる地形 と言える.
- 2) 現地調査により、焼岳白水谷斜面の地層構成は、3 層からなる地盤であった.上流側の下層に古期火砕 流が堆積し、それを覆うように新期火砕流が堆積し ており、下流に向かうにつれて、徐々に細粒化して いることがわかった.
- 3) 土質試験結果から,採取した火山砕屑物は、物理特 性から判断すると砂礫材料に近い性質であり、他の 火山性堆積物に比べて粗粒分が多い.原位置での乾 燥密度は最小密度試験で得られた最小乾燥密度より 小さく、室内試験で再現が困難であるほど緩やかな 堆積状態であることが分かった.また、せん断性に ついては、砂礫材料と同様な力学特性を示している こと、圧縮性については、砂礫材料と比べやや大き いことが把握できた.
- 4) 粒子法による火山砕屑物斜面の変形解析結果から, 骨格構造概念に基づいて実施した土質試験結果の再 現により,採取試料の材料定数およびその初期値を 決めることができた.また,現地で撮影した写真を 用いたデジタル写真測量により,斜面の三次元形状 を作成できる可能性を示した.その斜面形状をもと に実施した粒子法による数値解析では,斜面内にせ ん断ひずみが蓄積したものの,火山砕屑物斜面の崩 壊形態である斜面の表層崩壊とその後の後退性崩壊 といった崩壊形態を再現するには至らなかった.

今後は変形解析において,材料定数や解析条件,さらに は取得した解析断面が崩壊後のある程度安定している地 盤にあったことなどを見直して,再度検討してゆく予定で ある.加えて,地震作用時や降雨のモデル化を検討して, 火山地域における地盤災害の被害の軽減に寄与できるよ う研究をさらに発展させる.

謝辞

本研究は、一般財団法人国土技術研究センターの研究開 発助成(平成26年度)を受けて実施した.本研究で用い た精密航空レーザー測量の計測データについて、国土交通 省神通川水系砂防工事事務所ならびに岐阜県県土整備部 に提供して頂いた.また、株式会社安藤ハザマ山下航平氏 ならびに名古屋大学大学院浜島圭佑氏には、本研究で実施 した地形解析および実験に協力して頂いた.ここに記して、 感謝の意を表します.

参考文献

- 毎日新聞 <台風26号>集落に豪雨の爪痕,伊豆大島: http://mainichi.jp/graph/2013/10/16/20131016k0000e040218000c/001. html,(アクセス日:2014年7月30日).
- 2) 稲垣秀輝:全国の火山地域の分布特性とそこでの土砂災害の特徴、平成26年度重点研究課題火山地域における土砂災害発生メカニズムと社会的対応に関する研究集会資料、2014.
- 3) 国 土 交 通 省 北 陸 地 方 整 備 局 : http://www.hrr.mlit.go.jp/jintsu/outline/saigai/saigai.html, (アクセス 日:2014年12月23日).
- Asaoka, A., Noda, T., Yamada, E., Kaneda, K. and Nakano, M.: An elasto-plastic description of two distinct volume change mechanisms of soils, Soils and Foundations, Vol.42, No.5, pp.47-57, 2002.
- Lucy, L.B.: A numerical approach to the testing of the fission hypothesis, Astronomical Journal, Vol.82, pp.1023-1024, 1977.
- Gingold, R.A. and Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars, Monthly Notices of the Royal Astron. Soc., Vol. 181, pp. 375-389, 1977.
- 野々山栄人,中野正樹,野田利弘: SPH 法による地盤の掘削解析, 土木学会論文集 A2, Vol.69, No.2, pp.I_341-I_350, 2013.
- Nonoyama, H., Moriguchi, S., Sawada, K. and Yashima, A., Slope stability analysis using smoothed particle hydrodynamics (SPH) method, Soils and Foundations, Vol.55, No.2, pp.458-470, 2015. http://dx.doi.org/10.1016/j.sandf.2015.02.019.
- 9) 長谷川育英,星野康弘:焼岳火山噴火緊急減災対策について(中間報告),国土交通省北陸地方整備局,神通川水系砂防工事事務所,2011.
- 原山智:上高地地域の地質,地域地質研究報告(5万分の1地質図幅),地質調査所編,pp.94-116,1990.
- 11) 浅野憲雄, 杉井俊夫, 山田公夫: 豪雨・地震時における斜面の安 定性評価システムの構築, 土木学会第65回学術講演会講演概要 集, pp.73-74, 2010.
- 千田良道,鈴木浩二:2時期の航空レーザー測量のDSMによる移動土塊の抽出,平成24年度砂防学会研究発表会,R4-16,2012.
- 13)本明将来,横内啓隆,若井明彦,後藤聡: 台風26 号による伊豆 大島土砂災害の表層崩壊機構の検討(その1:遠心模型実験),第
 49回地盤工学研究発表, No.912, pp.1823-1824, 2014.
- 14) 増田将也, 荒木功平, 後藤聡: 火山性堆積物の物理特性および力 学特性に関する研究, 第49回地盤工学研究発表, No215, pp.429-430, 2014.
- 15) 西岡孝尚, 澁谷啓: 富士周辺における「スコリア」の地盤工学的 特性, 地盤工学ジャーナル, Vol.9, No.3, pp397-415, 2014.
- 16) Maeda, K., Sakai, H. and Sakai, M. : Development of seepage failure analysis method of ground with Smoothed Particle Hydrodynamics, Structural engineering / earthquake engineering, Vol.23, No. 2, pp.307s-319s, 2006.