第23回 中部地盤工学シンポジウム論文集

平成23年8月5日(金)

主催:公益社団法人 地盤工学会中部支部

後援:中部地質調査業協会

(社) 建設コンサルタンツ協会中部支部

(社) 日本建設業連合会 中部支部

目 次

午前の部I (9:35~10:50) :司会 豊田工業高等専門学校 伊東 孝

- 5. 管中混合固化処理工法を想定したセメント改良土の力学挙動の把握と弾塑性力学に基づく 解釈
 名古屋大学
 依田広貴、中野 正樹、笹山 哲司

午前の部Ⅱ (11:00~12:00) :司会 名古屋大学 檜尾 正也

- 8. 山留め掘削における合理的なグラウンドアンカーの支保パターンの探索~模型実験と数値 解析による検討~
 名古屋工業大学 奥田 一彰、加藤 盛大、菊本 統、中井 照夫、ホサイン シャヒン

午後の部I (13:00~14:00) :司会 大同大学 棚橋 秀行

特別講演「地盤工学者として新しい国際貢献の世界を開拓する」 京都大学教授 木村 亮先生

午後の部I (14:10~15:25) : 司会 名古屋工業大学 Md. Shahin Hossain

10. 集中豪雨による砂質堤体の損傷における間隙空気の影響と透気遮水シートの敷設効果……57
 名古屋工業大学 柴田 賢、前田 健一
 応用地質㈱ 馬場 干児
 太陽工業㈱ 桝尾 孝之

各種条件下における礫混じり砂の力学挙動の違いとそのシミュレーション……65
 名城大学 森 涼香、小高 猛司、崔 瑛

12. 軟弱地盤上の埋立履歴を考慮してモデル化した大型人工地盤の地震中・地震後応答解析…71
 名古屋大学 酒井崇之、野田 利弘
 (財) 地震予知総合研究振興会 浅岡 顕

午後の部Ⅲ (15:35~16:50) :司会 岐阜大学 森口 周二

- 18. 地盤や盛土高さの違いが盛土の破壊形態に及ぼす影響遠心模型実験の観察とその解釈 …111
 東海旅客鉄道㈱ 大木 基裕
 名古屋大学 中野 正樹、酒井崇之

午前の部 I (9:35~10:50)

司 会 伊東 孝 (豊田工業高等専門学校)

非排水繰り返し載荷を受ける豊浦砂の力学挙動の要素試験

Experimental study on Toyoura sand under cyclic loading

笹岡大路¹,山口健太朗²,張鋒³

- 1 名古屋工業大学大学院・工学研究科・創成シミュレーション工学専攻
- 2 静岡ガス
- 3 名古屋工業大学大学院・工学研究科・創成シミュレーション工学専攻・cho.ho@nitech.ac.jp

概 要

地震時の地盤の挙動や液状化を評価するにあたって、数値解析によって正確に地盤の挙動を予測しようという考えが主流となっており、地盤材料の変形挙動をより正確に表現できる構成式の提案が最も重要であると言える。数値解析の精度を向上するためには、室内要素試験結果の信頼性が求められている。本研究では、動的三軸試験機を用いて砂の繰り返しせん断時の力学挙動、特に拘束圧依存性と繰返し載荷速度の影響について、実験検証を行った。その結果、中密な砂の場合では、初期拘束圧が大きいほど液状化しにくいことがわかった。一方、緩い砂について、中密な砂とは全く異なる傾向が見られ、初期拘束圧が低いほど液状化しやすくなることが確認された。載荷周波数による影響については、初期拘束圧による影響と同様に、密度の異なる砂の載荷周波数の影響が全く異なっており、中密な砂では、載荷周波数が高いほど液状化しやすく、緩い砂においては逆な挙動が示された。

キーワード:繰返し三軸試験,載荷速度,砂質土

1. はじめに

液状化のメカニズムに関する実験的・解析的研究が多く なされているが、すべての問題が解決されているわけでは ない。砂の力学挙動は極めて複雑であり、様々な排水条件 と載荷過程で室内試験による実験的研究がなされてきた が、多くのメカニズムが明らかになってきたにもかかわら ず、まだ解明されていないものもある。本論文では非排水 繰返し三軸試験を実施し、載荷速度、拘束圧の影響に着目 し、砂の力学挙動を検証した。

2. 室内動的三軸試験

2.1 試験概要

本試験では、繰り返し荷重とその載荷周波数を制御でき る動的三軸試験機を用いて非排水せん断試験を行った。試 験に用いられた土の試料は豊浦砂 ($e_{max} = 0.975$, $e_{min} = 0.613$, $\rho = 2.65 g/cm^3$)である。供試体は高さ10cmであり、計 測項目が鉛直荷重、垂直変位、 横圧(側圧)、間隙水圧と 体積変化の5つである。周辺機器及び三軸室の概要は図1、 写真1に示す。なお中密な砂は締固め法で、緩い砂は水中 落下法で供試体を作成した。

2.2 試験結果

本研究では、初期拘束圧、載荷周波数の影響について着 目し、繰返しせん断時の力学挙動を検討した。

2.2.1 初期拘束圧の影響

初期拘束圧の違いについて比較する。中密な砂では (e=0.72~0.76)を用いて繰返し応力比 q/σ_{m0}=0.20、載荷周 波数 f=0.1Hz の載荷条件下で実験を行った。一方、緩い砂 (e=0.89~0.97)の場合には q/σ_{m0}=0.20、f=0.001Hz の載荷 条件で実験を行った。その結果を図 2、図 3 に示す。なお、 それぞれの試験条件を表 1、表 2 に示す。グラフは左から 有効応力径路、応力-ひずみ関係である。また、表の Nc(DA=5%)及び Nc(DA=10%)は両振幅ひずみが 5%、10% に達した時の繰返し載荷回数を示している。

図2に示すように、間隙比が同様な中密な砂に異なる拘 束圧のもとで繰返しせん断を行うと、いずれもサイクリッ クモビリティが起こっているが、初期拘束圧が大きくなる につれサイクリックモビリティに至るまでの繰返し回数 が多く、DA=5%に至るまでの繰り返し回数も多くなって いることが分かる。これは砂のような粒状体では拘束圧が 高くなるほど、粒子同士のかみ合いが強くなり、せん断抵 抗が強くなるからである。特に、拘束圧が 294kPa は実地 盤では非常に深い位置であるため、この試験結果は妥当で あると言える。

表	1	試驗条件	(図 2 に 関 す ろ 実 験)	÷)
2	-			</td

写真1 三軸繰返し載荷装置

一方、図3の緩い砂について、中密な砂とは全く異なる 傾向が見られた。すなわち、初期拘束圧が低い時に、サイ クリックモビリティに至るまでの繰返し回数や軸ひずみ が5%、10%に達するまでの繰返し回数が多くなる傾向が 見られた。緩い砂の場合、初期間隙比が同じ状態であって も、初期拘束圧が高いほど、砂の相対的間隙比(*e-lnp*'関 係の空間で、現状態から限界状態線までの距離)が大きく なり、より圧縮しやすい状態にあるため、非排水せん断時、 間隙水圧が発達しやすいことが原因と考えられる。この現 象は非排水単調載荷^{1),2)}で見られた現象と似ている。した がって、非排水繰返し載荷時、砂の力学挙動に与える初期 拘束圧の影響は砂の密度によって全く異なっていること がわかった。

図 3 拘束圧の違いによる影響(緩い砂,e=0.92)

表 2 試験条件(図3に関する実験)

	[1]	[2]	[3]		[1]	[2]
間隙比 e	0.76	0.75	0.72	間隙比 e	0.97	0.89
拘束圧	49	196	294	拘束圧	98	196
周波数	0.1	0.1	0.1	周波数	0.1	0.1
Nc(DA=5%)	5.1	15.5	108.3	Nc(DA=5%)	14.5	5.6
Nc(DA=10%)	13	34	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Nc(DA=10%)	33.4	7.6

2.2.2 載荷周波数による影響

次に、載荷周波数による影響を検証する。中密な砂を用 いて繰返し応力比 *q*/σ_{m0}=0.20 の載荷条件下で実験を行っ た。その結果を図4、図5に示す。緩い砂の場合の結果を 図6,図7に示す。なおそれぞれの試験条件を表3、表4、 表5、表6に示す。

中密な砂において有効応力経路をみると、載荷周波数が 大きいほどサイクリックモビリティに至るまでの繰り返 し回数が多く、応力-ひずみ関係から載荷周波数が高いほ ど軸ひずみの発達に多くの繰返し回数を要している。

表3 試験要件(図4に関する実験)

	[1]	[2]	[3]
間隙比 e	0.75	0.78	0.72
拘束圧	98	98	98
周波数	0.01	0.1	0.5
Nc(DA=5%)	32	25	14
Nc(DA=10%)	65.8	46	32

表 4 試験条件(図5に関する実験)

	[1]	[2]		
間隙比 e	0.75	0.73		
拘束圧	196	196		
周波数	0.1	0.5		
Nc(DA=5%)	16	9		
Nc(DA=10%)	34	16		

一方で緩い砂を見ると、載荷周波数が 0.5Hz と比較的高 い場合はサイクリックモビリティに至るまでの繰り返し 回数や軸ひずみが 5%,10%に達するまでの繰り返し回数が 著しく多くなる傾向が見られた。また、載荷周波数が大き いほど、初期載荷において立ち上がりが大きい(有効応力 の現象が小さい)ことが確認できる。以上のことから分か るように、載荷周波数がかなり大きいことが明らかになっ た。さらに、初期拘束圧による影響と同様に、密度の異な る砂の載荷周波数の影響が全く異なっており、中密な砂に おいては、載荷周波数が高いほど液状化しやすく、緩い砂 においては、逆な挙動が示された。この時間依存性に関す る力学的解釈は今後の研究課題となる。

表 5 試験条件(図6に関する実験)

	[1]	[2]	[3]
間隙比 e	0.92	0.93	0.94
拘束圧	98	98	98
周波数	0.001	0.01	0.5
Nc(DA=5%)	1.0	2.5	3.8
Nc(DA=10%)	1.5	4.7	4.8

表 6 試験条件(図7に関する実験)

	[1]	[2]	[3]
間隙比 e	0.89	0.87	0.86
拘束圧	196	196	196
周波数	0.001	0.01	0.5
Nc(DA=5%)	2.5	1.7	10.2
Nc(DA=10%)	4.2	3.7	13.2

3. まとめ

本論文では非排水繰り返し三軸試験を実施し、載荷周波 数、初期拘束圧の影響に着目し、その力学挙動を検証した。 中密な砂の場合では、初期拘束圧が大きいほど液状化しに くいことがわかった。一方、緩い砂について、中密な砂と は全く異なる傾向が見られ、初期拘束圧が低いほど液状化 しやすくなることが見られた。

載荷周波数による影響では,載荷周波数の影響がか なり大きいことが明らかになった。さらに,初期拘束圧に よる影響と同様に,密度の異なる砂の載荷周波数の影響 が全く異なっており,中密な砂においては,載荷周波数が 高いほど液状化しやすく,緩い砂においては,逆な挙動が 示された。今後はその現象の合理的解釈を図りたい。

なお,実験はすべて,同じ条件下で2回以上実施してい たが,同じ結果となっているため,実験の精度は十分ある と考えられる。

参考文献

- Ishihara, K. (1993): Liquefaction and flow failure during earthquake, The 33rd Rankine Lecture, Geotechnique.
- Verdugo, R. and Ishihara, K. (1996): The steady state of sandy soils, Soils and Foundations, Vol.36, No.2, 81-91.

排水三軸圧縮試験結果に基づく軟岩の構成式の高度化

Modification of constitutive model for soft rock based on drained triaxial compression test

岩田麻衣子¹,林宏樹²,沢田和秀³,森口周二⁴,八嶋厚⁵,張鋒⁶,檜尾正也⁷

- 1 岐阜大学・工学部・iwata_m@gifu-u.ac.jp
- 2 東海旅客鉄道
- 3 岐阜大学・流域圏科学研究センター
- 4 岐阜大学・工学部
- 5 岐阜大学
- 6 名古屋工業大学
- 7 名古屋大学

概 要

軟岩の力学挙動を表現できる構成式の開発や高精度化のために,これまでに軟岩を対象とした室内試験が 行われ,試験結果に基づいて構成式が提案されている。本研究では,軟岩斜面の崩壊予測解析手法の高度 化のために,軟岩を用いた異なる拘束圧での排水三軸圧縮試験を行い,試験結果に基づいて既存の構成式 の修正を行った。既存の構成式は,降伏曲面の形状を決定するパラメータを初期拘束圧ごとに決定する必 要があった。軟岩の力学特性の一つである時間依存性を考慮できる構成式の改良を行うために,拘束圧に よらず初期段階で統一的に決定できるパラメータを用いて,上記の解析パラメータに関する発展則を提案 した。要素シミュレーションを行った結果,修正した構成式により,様々な拘束圧における軟岩の力学挙 動を表現できることが確認された。

キーワード: 軟岩, 構成式, 三軸試験

1. はじめに

日本各地に軟岩は分布しており,その分布地域では,軟 岩斜面の崩壊とその被害が多数報告されている1)。軟岩の 定義は、分野によって異なるが、地盤工学では、土よりも 硬く,一般的な概念の岩石と呼ぶには軟らかい,土と岩の 中間的性質の地質材料とされている。また,一軸圧縮強度 が 20MPa 以下の土と岩の中間的な力学挙動を呈する材料 とも定義されている²⁾。軟岩の力学挙動を理解する上で留 意する点には、ひずみ軟化現象や時間依存性挙動がある。 ひずみ軟化現象は、荷重を加えると応力の増加とともにひ ずみが進行するが,応力が最大強度に達した後は,それ以 上の荷重を与えなくてもひずみが進行していく現象であ り, 地盤工学の諸問題で論じられる進行性破壊と密接に関 連すると考えられる。もう一つの特徴である時間依存性挙 動は,外力が作用した際に,応答に時間的な影響が生じる ことであり、地盤の長期不安定性の要因になると考えられ ている。これらの力学的特徴を有する軟岩が分布する地域 では、降雨や融雪などによる地下水位の上昇を誘因として、 地すべりや斜面崩壊などが発生する.

軟岩斜面の崩壊による被害を最小限に抑えるためには,

崩壊メカニズムの解明,および将来的に発生が危惧される 崩壊の位置・規模・形状・時間の予測を行うことが必要と される。数値解析により,高精度に実現象を再現するため には,地盤材料の力学挙動の把握と,力学挙動を適切に表 現できる力学モデルの構築が必要である。

このような背景のもと、軟岩の力学特性の把握を目的と して、さまざまな条件での室内試験が行われてきた³⁾⁴⁾。そ れらの結果から、拘束圧、ひずみ速度および排水条件の違 いが、軟岩の力学挙動に与える影響に関して検討されてい る。また、堆積軟岩を対象とした既存の実験結果に基づき、 時間依存性を考慮した軟岩の構成式が提案され、研究され てきた⁵⁾。しかしながら、提案されている構成式では、降 伏曲面の形状を決定するパラメータを初期拘束圧ごとに 決定しなければならず、実斜面を対象とした数値解析に適 用するには、統一的にパラメータを決定するための改良が 必要である。本研究では、軟岩斜面の崩壊予測解析手法の 高度化を目指し、提案されている軟岩の構成式⁵⁾の高度化 を行った。異なる拘束圧での実験結果に基づき、構成式に 用いる材料パラメータを決定し、要素シミュレーションを 行うことで、構成式の検証を行った。

2. 室内試験

本研究では,著者らが実施した,異なる拘束圧での排水 三軸圧縮試験結果⁴⁾を用いて,軟岩の構成式の修正および 検証を行った。ここでは,試験試料や試験概要,試験結果 等について説明する。

2.1 試験概要

試験試料には、大谷石を用いた。大谷石は、比較的均一 で目立った空隙がなく、加工性の良さや多数の均質な試料 を準備できるという観点から、再現性の高い実験データを 得るのに適しており、これまでにも堆積軟岩の力学特性を 明らかにするための室内試験に用いられている⁶。排水三 軸圧縮試験には、高さ 100mm、直径 50mm の円柱供試体 を水で飽和させて用いた。軟岩試料では、含水状態の変化 が試料の特性に影響を与えると考えられたため、新たに採 取されたブロックから直ちに整形し、作成した供試体は試 験を行うまで脱気水に浸して保存した。

排水三軸圧縮試験は,所定の圧力で等方圧密した後,軸 ひずみ速度を制御して鉛直軸荷重を載荷する。すべての試 験で,軸ひずみ速度は0.001%/min,背圧は0.5MPaとした。 拘束圧は,0.1,0.2,0.3,0.5,1.0,2.0,3.0,4.0MPaの8 通りとした。

2.2 試験結果

排水三軸圧縮試験の結果を図 1 に示す。図 1(a)に示す 軸差応力($\sigma_1 - \sigma_3$) ー軸ひずみ(ϵ_1)関係より,すべての試験 において,ひずみ軟化挙動を確認した。また,拘束圧が大 きいほど,ピーク強度,残留強度が大きくなることがわか る。図 1(b)に示す体積ひずみ(ϵ_v) ー軸ひずみ(ϵ_1)関係からも, ダイレイタンシー挙動が拘束圧に依存していることがわ かる。本研究では,これらの実験結果を参考に,既存の構 成式の修正と,修正した構成式の検証を行った。

3. 構成式の検証および高度化

本研究では、張らが subloading t_{ij} モデル⁷⁾に基づき提案 した堆積軟岩の弾粘塑性構成式 ⁵⁾の高度化を行った。この 弾粘塑性構成式は、中間主応力の影響を考慮できる t_{ij} の概 念と、過圧密土の挙動を表現できる subloading の概念に基 づいている。また、クリープ挙動を表現するために軟岩の 時間依存性が考慮されている。

3.1 既存の構成式の検証

構成式の高度化および検証は、上述の著者らが実施した 様々な拘束圧での圧密排水三軸圧縮試験⁴⁾の結果を基に行 った。表 1 に既存の構成式に用いる材料パラメータを示 す。これらの材料パラメータは、圧密排水三軸圧縮試験、 三軸クリープ試験、圧密除荷試験等の試験結果に基づき決 定した。既存の構成式は、限界状態の主応力比 *R*_f を初期 拘束圧ごとに決定する必要がある。排水三軸圧縮試験にお いて、軸差応力が変化しなくなった時点で試験を終了した ため、本研究では、試験終了時の主応力比を限界状態の主 応力比 *R*_f として求めた。試験結果から得られた、各初期 有効平均応力における限界状態での主応力比 *R*_fを表 2 に 示す。

(a) 軸差応力($\sigma_1 - \sigma_3$) - 軸ひずみ(ϵ_1)関係

(b) 体積ひずみ(ɛ,) - 軸ひずみ(ɛ)関係
 図 1 排水三軸圧縮試験結果⁴⁾

表 1 材料パラメータ(既存の構成式)

圧縮指数	λ	0.018
膨潤指数	ĸ	0.005
ポアソン比	ν	0.02
降伏関数の形状パラメータ	β	1.1
密度依存性パラメータ	а	850
時間依存性パラメータ	α	0.6
時間依存性パラメータ	Cn	0.02
圧密降伏応力	$p_c(MPa)$	21
基準状態での間隙比	e _{NC}	0.570
限界状態の応力比	Rf	表 2 参照

表 2 限界状態の応力比(既存の構成式)

初期平均有効応力	限界状態の応力比
$\sigma_{\rm m0}$ (MPa)	$R_{ m f}$
0.1	6.51
0.2	4.91
0.3	4.60
0.5	4.00
1.0	3.32
2.0	3.42
3.0	3.22
4.0	3.03

図2には、実験結果と既存の構成式による数値シミュ レーション結果より得られた軸差応力($\sigma_1 - \sigma_3$)ー軸ひず 係を示す。図2に示す軸差応力-軸ひずみ関係から、実 験結果と数値シミュレーション結果を比較すると,既存の 構成式は低い拘束圧では軟岩のひずみ軟化挙動や残留強 度を表現できていることがわかる。図3に示す体積ひず み-軸ひずみ関係からは、低い拘束圧ではせん断とともに 体積圧縮を示した後,体積膨張に転じる体積変化の挙動を 表現できている。また,低い拘束圧では体積変化が大きく なり,高い拘束圧では体積変化が小さくなる拘束圧の違い による体積変化の違いを表現できていることがわかる。し かしながら、最大強度を比較すると、実験結果に比べて数 値シミュレーション結果は小さく,既存の構成式は実験結 果を正確に表現できていないことがわかった。また、表2 に示したように,既存の構成式は,解析パラメータの一つ である限界状態の主応力比 R_fを初期有効拘束圧 σml ごと に与えなくてはいけないため,任意の応力状態での挙動を 表現するためには改良の必要がある。本研究では、さまざ まな拘束圧での力学挙動を表現すること、および限界状態 の主応力比 R_fを応力状態によらず統一的に決定すること の2点について構成式の改良を行った。

(b) 数値シミュレーション(既存の構成式)
 図 2 軸差応力(σ₁-σ₃) - 軸ひずみ(ε_i)関係

(b) 数値シミュレーション(既存の構成式)
 図 3 体積ひずみ(ε) - 軸ひずみ(ε)関係

3.2 構成式の高度化

既存の構成式では、上述した解析パラメータの一つである限界状態の主応力比 *R*_fは、以下の式より、降伏曲面の形状に関連するパラメータ*M**を決定する。

$$M^* = (X_{CS}^{\beta} + X_{CS}^{\beta-1}Y_{CS})^{1/\beta}$$
(1)

$$X_{CS} = \frac{\sqrt{2}}{3} (\sqrt{R_{\rm f}} - \frac{1}{\sqrt{R_{\rm f}}}), \qquad Y_{CS} = \frac{1 - \sqrt{R_{\rm f}}}{\sqrt{2}(\sqrt{R_{\rm f}} + 0.5)}$$
(2)

ここで, βは降伏関数の形状パラメータである。パラメ ータ M*は、図 4 に示すように、降伏曲面の形状を決定す るパラメータである。既存の構成式では、R_fは初期拘束圧 ごとに異なる定数であるため、M*はせん断の過程で常に 一定の値である。したがって、既存の構成式では、降伏曲 面は、初期の応力状態により形状が異なり、せん断の過程 では形状は変化せず、拡大もしくは縮小する。

パラメータ M*は,図 5 に示すようにストレス - ダイレ イタンシー曲線の切片(-dɛ/d y=0)に相当することから,本研 究では,実験結果に基づく考察を行った。図 6 に排水三 軸圧縮試験結果⁴⁾から得られたストレス-ダイレイタンシ ー関係を,傾向が判読しやすいように拘束圧 0.1, 1.0, 2.0, 4.0MPa の試験結果に限定して示す。これらの結果から, ストレス-ダイレイタンシー曲線の切片(-dɛ/d y=0)は初期 拘束圧によって異なることがわかる。また,せん断初期の 切片と,残留状態(ここでは実験終了時の軸ひずみが 7~ 10%の点)の切片が異なることがわかる。したがって,パラ メータ M*は,既存の構成式では初期拘束圧ごとに異なる 定数であったが,初期拘束圧により異なることに加え,せ ん断の過程で変化し,残留状態では応力状態にかかわらず 一定の値に収束すると考えられる。

図 6 ストレスーダイレイタンシー関係(排水三軸圧縮試験)

本研究では、排水三軸圧縮試験結果から得られたストレ スーダイレイタンシー関係を考慮し、パラメータ M*は定 数ではなく、せん断の過程で変化すると仮定して、構成式 の修正を行った。降伏曲面の形状を決定するパラメータ M*は、初期拘束圧ごとに異なり、せん断の過程で変化し、 残留状態では応力状態にかかわらず一定の値に収束する と仮定する。試験結果を考慮し、パラメータ M*の初期値 M*0およびせん断中の M*の変化量 dM*を、次式のように 与えた。

$$\boldsymbol{M}_{0}^{*} = \boldsymbol{M}_{\mathrm{CS}}^{*} \times OCR^{b} \tag{3}$$

$$dM^* = A \times \ln \frac{M_{\rm CS}^*}{M^*} d\mathcal{E}_d^p \tag{4}$$

ここで、*M**₀はせん断開始時の*M**,*M**_{CS}は限界状態での *M**,OCRは過圧密比,*dM**は*M**の増分,*def*²は塑性偏差 ひずみ増分である。*b*および*A*は、本研究で新規に提案し たパラメータである。*b*は、図 7 に示す*M**₀-OCR 関係 の曲線の形状を制御するパラメータである。また、*A*はせ ん断過程での*M**の変化の程度に影響する。*M**の初期値は OCRにより決定され、*M**はせん断中に塑性偏差ひずみ増 分に関連して変化する。図 7 に式(3)から得られる*M**₀-OCR 関係を、図 8 にせん断過程での*M**の変化のイメージ を*M**-軸ひずみ関係として示す。本研究で提案した発展 則では、既存の構成式ではせん断の過程で一定だった*M** が、図 8(b)に示すように、せん断中に変化し、残留状態で は応力状態によらず一定の値に収束する。

4. 圧密排水三軸圧縮試験の数値シミュレーション

修正した構成式を検証するために,堆積軟岩を用いた圧 密排水三軸圧縮試験⁴⁾の数値シミュレーションを行った。 材料パラメータは,限界状態の応力比 *R*fを除いて表 1 に 示した既存の構成式と同様の値を用いた。*R*fに代わり,式 (3)および式(4)に示した新規のパラメータ *M**_{CS}, *b*, *A* の値 を表 3 に示す。*M**_{CS} は,拘束圧 4.0MPa での試験終了時 の主応力比を用いて,式(1)および式(2)より算出した。ま た,*b* および*A* は,試験結果に合致するようにフィッテン グし,求めた。

表 3 材料パラメータ(追加)

図 9 に軸差応力($\sigma_1 - \sigma_3$) - 軸ひずみ(ϵ_1)関係を,図 10 には、体積ひずみ(ϵ_i)一軸ひずみ(ϵ_i)関係を示す。それぞれ 実験結果、既存の構成式での数値シミュレーション結果、 および提案した降伏曲面の形状を決定するパラメータ M^* の発展則を考慮した数値シミュレーション結果を示す。図 9 に示す軸差応力-軸ひずみ関係から、既存の構成式およ び修正した構成式は、初期のせん断剛性や残留強度が拘束 圧の大きさに依存する傾向を表現できている。最大強度を 比較すると、既存の構成式は実験結果に比べて小さいが、 修正した構成式は実験結果をよく表現できていることが 確認できる。また、修正した構成式は、実験を実施した範 囲の拘束圧の条件下で、さまざまな拘束圧の力学挙動を表 現できることがわかった。図 10 に示す体積ひずみー軸ひ ずみ関係からは、既存の構成式と同様に、修正した構成式

(c) 数値シミュレーション(修正した構成式)

図 9 軸差応力($\sigma_1 - \sigma_3$) - 軸ひずみ(ϵ_1)関係

5. まとめ

本研究では、排水三軸圧縮試験結果に基づいて、既存の 軟岩の構成式の高度化を行った。実験から得られたストレ スーダイレイタンシー関係を考慮し、降伏曲面の形状を決 定するパラメータ M*の発展則を提案した。修正した構成 式を用いて排水三軸圧縮試験の数値シミュレーションを 行った結果、軟岩の力学挙動を適切に表現できていること を確認できた。また、初期の拘束圧にかかわらず統一的に 与えた材料パラメータにより、異なる拘束圧における軟岩 の力学挙動を表現できた。

今後,本研究で提案した軟岩の構成式の有効性を確認す ることで,統一的に与える材料パラメータを用いて,様々 な応力状態での軟岩の力学挙動の表現が可能となる。それ により,実斜面に対して発生メカニズムを解明するための 再現解析や今後発生が危惧される斜面の崩壊予測解析を 行う上で,有効な解析手法の確立を望むことができる。

参考文献

- 社団法人地盤工学会:豪雨時における斜面崩壊のメカニズムおよび危険度予測,184p,2006.
- 赤井浩一: 軟岩とは?, 土と基礎, Vol.41, No.10, Ser. No.429, pp.1-6, 1993.
- 3) 瀧川雅博, 張鋒, 八嶋厚,:Moctar Amadou, 軟岩の時間依存性挙動 モデル高度化のための実験的研究, 第38回地盤工学研究発表会 発表講演集, pp.525-526, 2003.
- 4) 岩田麻衣子,大津亮太,八嶋厚,沢田和秀,檜尾正也:異なる拘 束圧における三軸圧縮特性に基づく軟岩の構成式の検証,第44 回地盤工学研究発表会発表講演集,No.255, pp.509-510, 2009..
- Zhang, F., Yashima, A., Nakai, T., Ye, G.L. and Aung, H., An elasto-viscoplastic model for soft sedimentary rock based on tij concept and subloading yield surface, Soils and Foundations, Vol.45, No.1, pp.65-73, 2005.
- 赤井浩一,足立紀尚,西好一,堆積軟岩(多孔質凝灰岩)の弾・塑性 挙動,土木学会論文報告集,第271号,pp.83-95,1978.
- Nakai, T. and Hinokio, M., A simple elastoplastic model for normally and over consolidated soils with unified material parameters, Soils and Foundations, Vol.44, No.2, pp.53-70, 2004.

応力履歴が砂の変形特性に及ぼす影響

(The influences of stress histories on the deformation characteristics of sand)

大橋龍起¹, 京川裕之², 菊本統³, 中井照夫⁴, ホサイン・シャヒン⁵, 伴旭将⁶

- 1 名古屋工業大学大学院・創成シミュレーション工学専攻・博士前期課程1年
- 2 東京大学生産技術研究所・基礎系部門・特別研究員
- 3 名古屋工業大学・都市社会工学科・助教(kikumoto@nitech.ac.jp)
- 4 名古屋工業大学・都市社会工学科・教授
- 5 名古屋工業大学・都市社会工学科・准教授
- 6 名古屋市上下水道局(元名古屋工業大学大学院・社会工学専攻)

概 要

地盤材料のような粒状体は,過去の応力履歴に応じて内部の粒子構造が変化し,その後異方的な変形特性 を示すことが知られている(応力誘導異方性)。この異方性は,特に繰返し載荷時における土の応答に大き く影響を及ぼし,排水条件では締固め,非排水条件では液状化現象など地盤工学の主要な問題と密接に関 係している。しかし,誘導異方性はこれまでにも異方硬化則や修正応力による記述が試みられているもの の,その発達・消散機構は完全には説明されていない。本稿では,応力誘導異方性を適切に表現するモデ ル化に先立ち,三軸試験機を用いて豊浦標準砂に種々の応力履歴与えた後,単調せん断試験を行い,応力 履歴の違いによるせん断剛性およびストレス・ダイレイタンシー関係の変遷をもとに,誘導異方性の発達 と消散について検討した。その結果,せん断剛性およびストレス・ダイレイタンシー関係の変遷は過去受 けた最大応力比・直前の載荷方向に大きく影響を受けることが示された。また,圧縮側あるいは伸張側に 片振りせん断を続けて行うことで誘導異方性の解消が示された。

キーワード:異方性,砂、ダイレイタンシー、繰返し三軸試験、排水せん断試験

1. はじめに

土は応力変化によって粒子間の接触状況が刻々と変わ り、これにより様々な方向に異方的な力学特性を示す(誘 導異方性) 材料である。このような誘導異方性は応力状態 によって常に変化するため、地盤挙動を評価する上で常に 考慮しなければならない特性であり, 地盤の締固めや近年 問題となっている液状化などは誘導異方性が密接に関係 する典型的な地盤工学問題である。従来,誘導異方性を取 り扱う手法として、移動 / 回転硬化モデルがしばしば用 いられており,数値解析に導入され,地盤の液状化判定な どで実績を上げている。しかしながら, 地震時に見られる 繰返し載荷時の誘導異方性を適切に表現できているとは 言い難く,繰返し載荷における応力反転時の塑性変形の早 期の発現などある特定の誘導異方性の影響を評価するに 留まっており,現象のメカニズムを本質的に捉えたモデル 化はなされていない。そのため、モデル化で使用されるパ ラメータの意味合いやその発展則は少々煩雑なものにな っている。そこで今一度,誘導異方性の影響ならびにその 発生機構を要素試験から適切に評価する必要があると思

われる。

著者らのこれまでの検討では、排水せん断を多数回繰り 返すとせん断変形や体積変化が膠着する状態について検 討を行い、その際にはせん断剛性だけでなく、ダイレイタ ンシー特性の変化から異方性の影響を評価した¹⁾。本稿で はよりシンプルな条件でこれら異方性の影響を検証する ため、排水三軸条件下で単純な応力履歴を与えた砂試料に 対して等方圧縮試験およびせん断試験を行い、誘導異方性 の発達・消散過程、その後の変形特性への影響を詳細に観 察する。

2. 実験に用いた砂供試体および実験概要

本試験で用いた試料は, 試料は豊浦標準砂 ($D_{50} = 0.2$ mm, $e_{max} = 0.95$, $e_{min} = 0.58$, $G_s = 2.65$)を用い,水中落下法およ び所定の密度 ($e_0 = 0.68$)になるように突き固めを行い, 飽和砂供試体 (高さ 12.15 cm, 直径 5 cm の円柱形)を作成 した。この密詰め供試体は、等方圧縮時に軸差ひずみ (ε_d = 2/3*($\varepsilon_a - \varepsilon_r$))が発生しない理想的な等方変形を示すこと から,供試体に形成される初期異方性が有さないことを確 認している。なお本試験では、微小変形時の変形特性に関 しても議論を行うため、供試体周面のメンブレンの粒子間 への貫入量を補正することで、正確な体積変化を計測する。 試験はすべて排水三軸条件、p=196 kPaの平均有効応力 一定下で行った。なお、すべての試験で98kPaのバックプ レッシャーを一定で与えており、本文中に示す応力はすべ て有効応力である。

5. 片振りせん断履歴によって生じる異方性とその 変形特性への影響

3.1 単調片振りせん断履歴(等方応力状態まで除荷) がその後の圧縮・せん断挙動に及ぼす影響

単調なせん断履歴がその後の等方圧縮時およびせん断 時の土の力学特性に及ぼす影響について検証する。図-1, 2 に実施した試験の応力経路をまとめる。ここに,Rは主 応力比 σ_l/σ_3 であり,応力経路で示されるRおよび応力比 q/pは,圧縮側と伸張側を区別するために伸張側を負とす る。試験は、等方応力状態(p = 196kPa)からR = 4 (q/p = 1.5), R = 3 (q/p = 1.2),R = 2 (q/p = 0.75),R = -4 (q/p = -1.0),R = -3 (q/p = -0.86),R = -2 (q/p = -0.6)の計6種類の片振り圧 縮・伸張せん断履歴を与え等方応力状態まで除荷した後 (経路A→B),p = 196 kPa からp = 686kPa まで等方的な 応力増分を与える(経路B→C)または三軸圧縮せん断試 験(経路B→D)を行う。

まず,単調なせん断履歴によるその後の圧縮挙動への影 響について検討する。図-3に示した7種類のプロットは、 圧縮・伸張側にそれぞれ主応力比R=2,3,4まで単調に片 振りせん断履歴を与えた砂と履歴を与えなかった砂の等 方圧縮時の ε_n-ε_r 関係を示している。図より, せん断履歴 を受けていない砂は等方的に圧縮するのに対して、せん断 履歴を受けた土は等方的な応力増分に対して異方的に振 舞い、せん断時に最大主応力が作用した方向に固くなる。 また、そのような相対的な剛性変化の程度は、 せん断時に 与えた応力比が大きいほど顕著である。よって, 異方性の 発達方向や程度は過去に受けたせん断履歴の方向や応力 比によることがわかる。ただし、 圧縮側にせん断履歴を受 けた土は, 圧縮応力の増加に伴ってひずみ経路の傾きが等 方的変形 ($\delta \varepsilon_a = \delta \varepsilon_r$) を表す 45° 勾配に近づくことから, 等方的な応力増加によって誘導異方性は徐々に解消する こともわかる。

続いて、図-3と同様の1サイクルの片振りせん断履歴を 受けた砂のその後のせん断特性について比較する。図-4, 5にそれぞれ圧縮側,伸張側に片振りせん断履歴を与えた 後の三軸圧縮せん断試験(逆振り載荷試験)の結果を示す。 両図中の(a)図には応力比 q/p〜軸差ひずみ ϵ_a 〜体積ひずみ ϵ_r 関係,(b)図にはストレス・ダイレイタンシー関係(応力 比 q/p〜全ひずみ増分比($-d\epsilon_r/d\epsilon_d$)関係:以降 SD 関係と記 述)を示す(以後,全ての試験結果において同様の整理を 行う)。なお,弾塑性構成則を展開する際には通常,塑性 ひずみ増分について SD 関係を仮定するが,試験では全ひ ずみ増分について実測値を整理していることに注意され たい。また,白抜きプロットは応力履歴の無い等方性試料 の単調せん断試験の結果である。

図-4(a)より,過去に受けた応力履歴と同一方向に再載荷 される場合,載荷初期のせん断剛性が高くなっており,特 に高い応力比のせん断履歴を受けた試料ほど高い応力比

図-1 単調片振りせん断履歴(圧縮)を与えた砂の三軸圧縮 せん断試験および等方圧縮試験 応力経路

図-2 単調片振りせん断履歴(伸張)を与えた砂の三軸圧縮 せん断試験および等方圧縮試験 応力経路

(a)応力比 q/p~軸差ひずみ & 体積ひずみ & 関係 図-5 単調片振りせん断履歴(伸張)を与えた砂の三軸圧縮せん断試験

まで異方性が解消しないことが分かる。ただし、応力比の 増加に伴ってせん断変形が進行して,最終的には単調せん 断時と同様の破壊強度に至っている。このときのダイレイ タンシー特性(図-4(b))は、過去に受けた最大応力比以前 では履歴の無い単調せん断時の S-D 関係に比べて膨張傾 向にあるが,以前に受けた最大応力比に達した以降は履歴 の無い単調載荷の結果と同じユニークな S-D 関係が得ら れる。一方で,先に与えた応力履歴とは逆方向に載荷する ケース(図-5(a), (b))では、過去に受けた応力履歴が大き いほど,等方応力状態を跨ぐ逆振り載荷初期のせん断剛性 は低下するが,上述の同一方向への再載荷時ほど剛性の変 化に顕著な差は見られず,最終的な破壊強度は再載荷と同 様に応力履歴に依らないことが分かる。またダイレイタン シー特性は、等方応力以前ではせん断履歴が大きいほど圧 縮傾向にあるが,等方応力以降は履歴の無い単調せん断試 験の結果とほぼ一致する。

3.2 単調片振りせん断履歴(異方応力状態まで除荷) がその後のせん断挙動に及ぼす影響

次に3.1と同様に一度主応力比R=4までせん断した後, R=2,3の異方応力状態まで除荷した後の再載荷試験より,

(b)SD 関係

図-6 単調片振りせん断履歴(異方応力状態まで除荷) を与えた砂の三軸圧縮せん断試験 応力経路

除荷幅による異方性の変化を検討する。実施した試験経路 (図-6)は、主応力比R=4まで三軸圧縮せん断を行った 後,各主応力比(R = 3, 2)まで除荷し(経路 A→B'), その後三軸圧縮せん断を行う(経路 B'→C')。図-7,8 に R =2,3からの再載荷(経路 B'→C')の結果をそれぞれ示す。 両図には比較のために 3.1 節の図-4 で示した応力履歴 R=

⁽a)応力比 q/p~軸差ひずみ&~体積ひずみ&関係 図 g 単調比振りせん 断履

(b)SD 関係

図-8 単調片振りせん断履歴(伸張)を与えた砂の三軸圧縮せん断試験

4を与えて等方応力状態まで除荷した再載荷三軸圧縮せん 断試験の結果の R = 2,3 からの結果(経路 B→C)を同時 に示す。

図-7,8の両図から,一度応力履歴を与えた後に異方応力 状態まで除荷したケースの方が等方応力状態まで除荷す るよりも,再載荷時のせん断剛性が高くなり,SD 関係も より膨張傾向を示していることから,異方性による影響が 除荷幅の大きさに伴って消散していることが分かる。また, その膨張傾向は過去に受けた最大応力比である R=4 まで であり,R=4以降は履歴の無い単調圧縮せん断試験の結 果と一致している。

3.3 非単調片振りせん断履歴(圧縮)がその後のせん 断挙動に及ぼす影響

3.1 と 3.2 では片振りせん断履歴を一度与えたケースで 誘導異方性の影響を検討した。本節では、三軸圧縮側に 2 度のせん断履歴を与え、その後のせん断挙動への影響を調 べる。その際、R = 2,4の異なる応力履歴を順序を変えて 与えたケースを行い、応力履歴の順序による異方性の変化 を検討する。試験の応力経路(図-9)は、

①等方応力状態から圧縮側に主応力比 R = 4の応力履歴を 与えた後,再度圧縮側に R = 2の応力履歴を与えたケース, ② ①のケースとは逆に,圧縮側に R = 2の応力履歴を与え た後,再度圧縮側に R = 4の応力履歴を与えたケース, ③圧縮側に R = 4の応力履歴を二度与えたケース,以上の 3 ケースの異なるせん断履歴を与えた(経路 $A \rightarrow C$)後,

図-9 非単調片振りせん断履歴(圧縮) を与えた砂の三軸圧縮せん断試験 応力経路

三軸圧縮せん断を行った(経路 C→D)。図-10の試験結果 (経路 C→D)には、比較のために応力履歴の無い単調載 荷試験、3.1節の図-4で示した応力履歴 R = 4を与えた再 載荷三軸圧縮せん断試験の結果を同時に示す。

図-10(a), (b)両図より,2度のせん断履歴を与えたどの試 験パターンも3.1 で示した圧縮側に応力比R=4のせん断 履歴を一度与えた結果に似た応力ひずみ関係になり,SD 関係も過去に受けた最大応力比であるR=4までは膨張傾 向を示し,R=4を越えるとその影響は消失してせん断履 歴を受けていない試料と同じ関係に近づく。よって,同じ

(a)応力比 q/p~軸差ひずみ ε_a ~体積ひずみ ε_v 関係(b)SD 関係図-10 非単調片振りせん断履歴(圧縮)を与えた砂の三軸圧縮せん断試験

載荷方向に異なる応力比の繰返しせん断履歴を与える場合,載荷順序に依らず,過去に受けた最大応力比(R=4)が土の異方性を支配することが分かる。

以上3.1~3.3 で示された種々の片振りせん断履歴によっ て発達する異方性についてまとまると、せん断時には最大 主応力方向に相対的に剛性を増加させるような誘導異方 性が発達する。このため、過去のせん断と同じ方向に再せ ん断する場合には硬く、逆振り側にせん断する場合には柔 らかいせん断挙動を呈する。このときダイレイタンシー特 性は、再載荷時では膨張傾向、逆振り載荷時では圧縮傾向 を示す。このような異方性の程度は、除荷時に少なからず 消散するが、せん断履歴の最大応力比が高いほど大きく、 過去に経験した応力経路下では異方性の影響が明確にあ らわれる。ただし、再せん断あるいは逆振りせん断を続け て、過去に受けたことの無い応力経路に差し掛かると、そ の後はせん断履歴によらずユニークな変形挙動(ストレス ダイレイタンシー特性)を呈する。

両振りせん断履歴によって発達・消散する異方 性とその変形特性への影響

4.1 単調・非単調両振りせん断履歴がその後のせん断 挙動に及ぼす影響

本節では、単調せん断によりいったんある方向に発達し た異方性が、等方応力を跨いだ逆振り載荷によってどのよ うに消散するかをその後の三軸圧縮せん断挙動から読み 取る。与えた応力経路は(図-11)は、等方応力状態から 伸張側に主応力比 R = -4、続いて圧縮側に R = 4の応力履 歴を与えたケース、それとは逆に先に圧縮側 R = 4、続い て伸張側に R = -4, -3, -2の応力履歴を与えた 3 ケースの計 4 ケースの応力履歴を与え(経路 A→C)、その後三軸圧縮 せん断試験を行う(経路 C→D)。図-12に示す結果(経路 C→D)には、図-10と同様に応力履歴の無い単調載荷試験, 応力履歴 R = 4を与えた再載荷三軸圧縮せん断試験の結果 を比較のために示す。

図-12 より,はじめに伸張側 R = -4,続いて圧縮側 R = 4 にせん断履歴を与えた試験(Test R4E-4C)と圧縮側にせん

図-11 逆振りせん断履歴を与えた砂の三軸圧縮せん断試験 応力経路

断履歴 R = 4 を与えた結果(Test R4C)を比較すると、せ ん断剛性ならびに SD 関係に大きな差は見られない。また 3.1 の図-5 の結果から、一度伸張側に応力履歴を与えた土 は、その後載荷方向を逆振りの圧縮側に変化させるとせん 断剛性が大きく低下する(軸方向に軟かい挙動を呈する) ことが示されたことを考慮すると、一度伸張側に発達した 誘導異方性はその後の圧縮側への載荷で解消し, その後の 変形特性は直前の(圧縮側の)応力履歴の影響を強く受け ていると考えられる。次に載荷方向を圧縮側(R = 4)か ら伸張側 (R = 2, 3 or 4) に逆振り載荷履歴を与えたケース (Test R4C-2E, Test R4C-3E, Test R4C-4E) について検討を 行う。結果より, 逆振り伸張側へのせん断応力比が大きい ほど、その後の載荷ではせん断剛性は低くなり、ダイレイ タンシー特性も応力履歴の無い場合(No history)に近づ いている。伸張 R = -4→圧縮 R = 4 と履歴を与えた Test R4E-4C とは載荷順序が逆(圧縮→伸張)になっているだ けであり、はじめの圧縮履歴によって発達した異方性が続 く伸張側への載荷で消散していることは容易に理解でき る。ただし、3.1の図-5で示された伸張側にのみ履歴を与 えたケースとは異なり、一度圧縮側に履歴を与えた今回の ケースではその後の載荷挙動は,履歴を与えない単調載荷 の結果よりもせん断剛性は高く,ダイレイタンシー特性の

図-12 逆振りせん断履歴を与えた砂の三軸圧縮せん断試験

変化もすぐには解消していないことが分かる。つまり,土 の誘導異方性は,直前の載荷に影響を受けるが,それ以前 の載荷で発達した誘導異方性の解消にも大きく依存する。

4.2 三次元的に発達する誘導異方性

ここで, 三軸圧縮 / 伸張履歴 (R=4,-4) を順番を変え て与えた試験をもう一度考えてみる。三軸伸張(R = -4) 後、三軸E縮履歴 (R=4) を与えた Test R4E-4C では、一 度だけ圧縮履歴を与えた Test R4C の結果と一致している ことから,はじめの伸張履歴の影響は消失し,続く圧縮履 歴の影響が土の異方性を支配する。一方,三軸圧縮(R=4) 後, 三軸伸張履歴 (R = -4) を与えた Test R4C-4E では, 履歴無しの単調載荷(No history)との比較から、せん断 変形,ダイレイタンシー特性ともに,直前にR=-4の伸張 履歴を与えたにも関わらず圧縮履歴の影響が残っている。 つまり,同じ主応力比を与えた場合,伸張よりも圧縮せん 断履歴が残り易いと考えられる。このような異方性の発達 の差は、図-3で示す圧縮・伸張履歴を与えた後の等方圧縮 試験において, 圧縮履歴を与えたものほど異方的な変形を 示していることから確認できる。さて、小田²⁾は2次元光 弾性実験から、異方応力状態の土は最大主応力(oi)方向 にコラムを形成するように土粒子配列が変化することを 示しており、その影響を受けて土には異方的な剛性(o 方向に強い構造)を示す誘導異方性が発達する。このこと から、伸張側 ($\sigma_1 = \sigma_2 > \sigma_3$)の載荷では中間主応力と最大 主応力が一致するときは特定の方向へのコラムは形成さ れにくいと考えられるため、圧縮側 $(\sigma_1 > \sigma_2 = \sigma_3)$ の1方 向に形成されるコラムよりその影響が小さくなる。つまり, 誘導異方性の影響を評価する際には,単に与えられた最大 応力比だけでなく,中間主応力の大小を考慮した三次元的 な応力状態において適切に評価する必要があると考える。

図-13 繰返し片振りせん断試験 応力経路

5. 複数回の片振り・両振りせん断試験時における 異方性の発達とその変形特性への影響

次に所定の主応力比振幅一定で繰返し三軸せん断試験 を行い,同じせん断履歴を与えられた際の,土の誘導異方 性の蓄積 / 解消ならびにその変形特性への影響を検証す る。試験経路(図-13,15)は、これまでの試験と同様に 等方応力状態 (p=196kPa)から圧縮側のみの片振り(R=0.0 \leftrightarrow 3.0),圧縮・伸張側に両振り($R=-3.0 \leftrightarrow$ 3.0)の 2 種類の複数回の繰返し三軸せん断試験を行う。これらの 試験は、1 サイクルのせん断でのせん断変形,体積変化が 閉じた定常状態³³まで繰返しせん断を行った。図-14 に片 振り繰返し三軸せん断試験($R=0 \leftrightarrow$ 3),図-16に両振り 繰返し三軸せん断試験($R=-3 \leftrightarrow$ 3)の各サイクルにおけ る圧縮方向載荷時の結果を示す。なお、19 および 29 サイ クル履歴を与えた砂は定常状態にある。

図-14 より, 圧縮片振り繰返しせん断時には, 繰返し回数の増加に伴い, せん断剛性はより高くなり, SD 関係は 多少のバラつきはあるが膨張傾向が大きくなる。また, こ

(a)応力比 q/p~軸差ひずみ ε_d~体積ひずみ ε_v関係

図-15 繰返し両振りせん断試験 応力経路

のような繰返し載荷時における力学特性の変化は、いずれ 定常状態に至る。このことから、4.1 で示したように誘導 異方性が解消し切らない圧縮側での繰返しせん断では,繰 返し回数の増加にともない圧縮側に異方性が蓄積し, 土は 載荷状態によって決まる一意的な定常状態に至ると考え られる。

一方,図-16に示す圧縮・伸張側への両振り繰返しせん 断試験では,伸張側へのせん断過程を含むため異方性の解 消が作用し、図-14 に示される片振り載荷試験よりも、繰 返し回数に対するせん断剛性の増加,ダイレイタンシーの 膨張側の遷移は緩慢であるが,最終的には定常状態に至る ことが分かる。またこのとき、圧縮側だけではなく、伸張 側も同様の定常状態に至っていることに注意されたい。つ まり、これまである一方向に対する発達・消散を議論して きた誘導異方性は,実際は応力経路に応じてあらゆる方向 に発達・消散を繰り返しながら分布, 蓄積していくと考え られる。

図-17は、上記の片振り繰返しせん断および両振り繰返 しせん断で定常状態に至った(29 サイクル)後の三軸圧 縮時の応力比 q/p~軸差ひずみ&~体積ひずみ& 関係を示 している。図から、どちらの載荷条件でも定常化に至って いるため大きなせん断剛性を示すが、図-3.4と同様に伸張 側からの逆振りとなる両振り繰返し試験(R=-3 ⇔ 3)は,

圧縮側の再載荷である片振り繰返しせん断試験(R=0 ⇔ 3) に比べてそのせん断剛性が低くなっており、たとえ定 常化に至っていたとしても, 土は直前の載荷の影響を受け ることが分かる。

6. 結論

本稿では, 三軸圧縮・伸張方向に種々のせん断履歴を与 えた豊浦砂を用いたせん断・等方圧縮試験(等方的に応力 増分を与えた)より、応力履歴によって発達・消散する誘 導異方性とその変形特性への影響について検討を行った。 以下に試験結果より得られた誘導異方性のモデル化で考 慮すべきポイントをまとめる。

- f
 振りせん断履歴によって発達する誘導異方性

 土はせん断時に最大主応力方向に相対的に剛性を 増加させるような誘導異方性が発達するため、そ の後に等方的な応力増分を与えると誘導異方性が 発達した方向は相対的に変形が生じにくくなる。 せん断挙動に関しては,過去のせん断と同じ方向 に再せん断する場合には硬く, 逆振り側にせん断 する場合には柔らかいせん断挙動を呈する。この ときダイレイタンシー特性は,再載荷時では膨張 傾向、逆振り載荷時では圧縮傾向を示す。このよ うな異方性の程度は,除荷時に少なからず消散す るが, せん断履歴の最大応力比が高いほど大きく, 過去に経験した応力経路下では異方性の影響が明 確にあらわれる。ただし、過去に受けたことの無 い応力経路下ではせん断履歴によらずユニークな 変形挙動(ストレスダイレイタンシー特性)を呈 する。
- 両振りせん断履歴によって発達・解消する誘導異 2) 方性

逆振り載荷のように最大主応力方向を変化させた せん断履歴を与えると土の誘導異方性は, 直前の 載荷に強く影響を受けるが、それ以前の載荷で発 達した誘導異方性の解消にも大きく依存する。ま た同じ主応力比履歴を与える載荷であっても、誘 導異方性の程度は中間主応力の相対的な大きさに 影響を受けるため,三軸圧縮条件では最大主応力 と中間主応力が一致する三軸伸張条件よりも強固 な異方性が発達する。

3) 多数回の繰返しせん断によって膠着・分布する誘 導異方性 応力比一定の多数回の繰返し載荷においては、繰 返し回数の増加にともない異方性が蓄積すること で、最終的に異方性の発達が収束し、載荷状態に よって決まる一意的な定常状態をむかえる。この とき誘導異方性はある一方向に蓄積するのではな く、応力経路に応じてあらゆる方向に発達・消散 を繰返しながら分布、蓄積していくと考えられる。

以上の結果を踏まえ、今後は Rendulic 面外の三次元的な 応力状態を制御できる三主応力制御試験機、さらには主応 力軸の回転を考慮した中空ねじり試験機を用いた排水試 験から、より広範な応力履歴によって生じる誘導異方性の 影響について検討を進めていく。

参考文献

1) 檜尾正也,中井照夫,星川拓哉,吉田英生:単調および繰返し 載荷を受ける砂のダイレイタンシー特性と異方性,地盤工学会論 文報告書, Vol.41, No.3, pp.107-124, 2001

2) Oda, M., Nemat-Nasser, S. and Konishi, J. (1985): Stress-induced anisotropy in granular masses, Soils and Foundations, Vol. 25, No. 3, 85-97.

3) 山崎光,伴旭将,京川裕之,菊本統,中井照夫,石原隆寛:砂の繰返し載荷特性における応力比・密度・主応力方向の影響,第 22 回中部地盤工学シンポジウム

各種の応力履歴を受けた再構成粘土の力学特性

Mechanical properties of reconstituted clay under various stress history

吉田賢史¹,三好直輔¹,福沢宏樹²,小高猛司³,崔 瑛³,板橋一雄⁴

- 1 名城大学大学院・理工学研究科建設システム工学専攻
- 2 ニュージェック (元名城大院)
- 3 名城大学・理工学部建設システム工学科・kodaka@meijo-u.ac.jp
- 4 名城大学・常勤理事

概 要

スラリーから予圧密によって作製した再構成有楽町粘土を用いて,各種の応力履歴を受けた粘土供試体 の力学挙動について,三軸試験と単純せん断試験の結果を用いて考察した。まず,予圧密の圧密履歴によ る初期異方性を検討するため,予圧密後の再構成粘土を圧密方向と同一の鉛直方向とそれと直交する水平 方向の2種で切り出した供試体を作製し,三軸試験を実施した。両者の試験結果は若干異なるが,いずれ の応力経路においても軸差応力が単調に増加しながら限界状態に到達しており,初期異方性の影響は小さ いことがわかった。一方,含水比を変えないように再構成粘土を練り返した「練返し供試体」も作製して 力学挙動を比較した。練返し供試体では,限界状態線付近までは再構成粘土とほぼ同様の挙動を示すが, 最終段階で急激に正のダイレイタンシーが発現し,軸差応力が増加する「巻き返し」がみられた。これは, 圧密試験結果から考察すると,予圧密後に過圧密状態に置かれた再構成粘土をそのままの含水比で練り返 すことによって先行圧密履歴が解消され,より過圧密化するためである。そのため,練返し供試体が完全 な正規圧密状態となる高拘束圧まで圧密することにより,再構成粘土と同様の力学挙動が得られることを 高圧三軸試験によって確認することを試みた。

キーワード:再構成粘土,練返し供試体,三軸試験,単純せん断試験,初期異方性

1. はじめに

自然堆積粘土は, 地質学的な長い時間を経た堆積環境に よって, 土粒子の骨格構造が形成され, 過圧密性や異方性 が発現している。構造が卓越した不攪乱粘土は一般に鋭敏 性が高いと判断され、その鋭敏性を評価するためには、練 り返して構造を乱した攪乱粘土での試験結果と、不攪乱粘 土の結果を比較する必要がある。三好ら¹⁾は、練り返した 攪乱試料を用いて三軸試験を実施した結果, 不攪乱試料に 現れるひずみ軟化挙動は観察されず, せん断後半で正のダ イレイタンシー挙動(いわゆる「巻き返し」)が見られる ことを報告している。一方、構造の低位化を期待してスラ リーから作製する再構成粘土では、この巻き返しは観察で きない。そこで本研究では、スラリーを予圧密することに よって作製する「再構成粘土」と、それを「練り返した」 粘土を用いて,「練返し履歴」を受けた粘土の力学挙動を 三軸試験と単純せん断試験の結果から考察する。すなわち、 「練返し履歴」が構造を劣化させるだけの行為ではないこ

とを明らかにする。さらに,再構成粘土の予圧密時の圧密 履歴による初期異方性に関しても考察する。

2. 試験試料と試験の流れ

2.1 試験試料

本研究に使用した試料は東京湾で浚渫採取した有楽町 層粘土であり,液性限界が86%,塑性限界が31%,塑性指 数が55 である。有楽町層粘土を420µmフルイで裏濾し し,貝殻などの固形物を取り除き,液性限界の2倍程度の 含水比になるように蒸留水を加えてスラリー状にしてか ら、ミキサーで十分に攪拌した。その後,直径20cmのア クリル円筒容器に試料を入れ,24時間真空ポンプを用いて 脱気した後,圧密荷重を5日ほどかけて徐々に増加させて ゆき,最終的に100kPaの上載圧で2週間ほど一次元的に 予圧密して供試体として再構成した。以降,この状態の粘 土を「再構成粘土」と呼ぶ。一方,予圧密後の再構成粘土 を,含水比を一定に保ったまま,手こね作業で十分に練り 返した供試体も作製した。以降,この状態の粘土を「練返 し粘土」と呼ぶ。

2.2 試験の流れ

本研究では、はじめに定ひずみ速度圧密試験(CRS 圧密 試験)を実施し、再構成粘土と練返し粘土の圧密特性の違 いを検討する。次に、予圧密の圧密履歴による初期異方性 の影響について検討するため、予圧密後の再構成粘土を圧 密方向と同一の鉛直方向に切り出した供試体(鉛直供試 体)と、それと直交する水平方向に切り出した供試体(水 平供試体)を作製し、三軸試験を実施する。次に、三軸試 験と単純せん断試験を実施し、再構成粘土と練返し粘土の 力学挙動の比較を行う。また、各種の応力履歴が消去され る正規圧密状態を探るために、高圧三軸試験を実施する。

3. 試験装置の概要と各試験の手順

3.1 CRS 圧密試験装置

本研究で用いた CRS 試験装置は、載荷機構にメガトル クモータを使用していることにより、位置決めが極めて高 精度の分解能(0.1µm以下)で可能なために、モーターに よる載荷軸の制御がそのまま変位の計測も兼ねることが でき、高効率かつ高精度の実験ができる。載荷速度は 2%/min~0.00002%/min まで100万倍の幅で随時可変でき る。また、プログラムの制御により定圧試験も可能であ る。供試体は直径 60mm、高さ 20mmの円柱形である。 成型した供試体をガイドリング内に入れ、圧密試験装置 の底板に設置し、圧密容器を被せる。その後、メガトル クモータを用いて、載荷速度 0.02%/min で実施した。

3.2 三軸試験装置

写真1に三軸試験装置の全景を示す。載荷機構は、単 調載荷による圧縮・伸張試験に関しては、DCサーボモー タで制御するスクリュージャッキによる軸ひずみ速度制 御であり、軸ひずみ載荷速度を一定(0.002~2.0mm/min) で載荷することができる。供試体寸法は直径 50mm、高 さ100mmの円柱形である。成形した供試体をセルに設置 後、二重負圧法によって飽和化を行う。背圧を 200kPa 作 用させながら、24時間かけて十分に圧密を行い、非排水 せん断試験を実施した。また、載荷速度は 0.1%/min のひ ずみ速度制御とした。

3.3 単純せん断試験装置

載荷機構はスクリュージャッキをパルスモーターとハ ーモニックドライブ減速機で制御しており, 広範囲なせ ん断ひずみ速度(0.002~0.6%/min) での試験が可能であ る。また荷重の計測には、鉛直荷重、水平荷重ともに内 部ロードセルを用い、水平変位は上部ペデスタルの移動 量をギャップセンサーで計測している。また、供試体寸 法は直径 60mm, 高さ 30mm であるため, シンウォール サンプラーで採取した自然堆積粘土の試験でも無理なく 実施することができる。上下ペデスタルには刃付きのポ ーラスストーン(金属刃 高さ 0.5mm, 厚さ 1.5mm)を設 置しており、供試体との摩擦を十分に確保したうえで上 部ペデスタルを水平移動させることによって単純せん断 試験を行う。なお、せん断中の単純せん断モードを確保 するために、写真2に示すように水が入ったセル内にお いて、メンブレンを被せた供試体の外側に、供試体径と 同じ内径の穴を持つ厚さ 1mm のドーナツ形状の多層ス

リップリングを 30 枚積層させて設置し,供試体側面形状 を等変位に拘束しながら非排水条件による定体積せん断 を実施している。また,鉛直載荷軸は固定したまません断 することで,異方圧密条件下でも無理なく定体積単純せん 断が可能である。供試体側面形状を等変位に拘束すれば, 完全な単純せん断モードを実現することが可能であるこ とは数値解析でも示されているが,実際には圧密過程にお いて,供試体とスリップリングの間に遊びが生じるために, 完全な単純せん断モードを満たしていないことに注意す る。三軸試験と同様に成型した供試体をセルに設置後,二 重負圧法によって飽和化を行う。背圧を 200kPa 作用させ ながら, 20 時間圧密した後,非排水せん断試験を実施し た。また,載荷速度は 0.1%/min のひずみ速度制御とした。

3.4 高圧三軸試験装置

写真3に高圧三軸試験装置の全景を示す。載荷機構には、 メガトルクモータを使用しており、高精度の分解能での軸

写真1 三軸試験装置の全景

写真2 単純せん断試験機のセル内の様子

写真3 高圧三軸試験装置の全景

図1 再構成粘土と練返し試料の CRS 圧密試験結果の比較

図3 三次元空間上の有効応力経路

圧縮載荷が可能である。軸ひずみ載荷速度は 0.01%/min~2%/min まで可変できる。また、ベロフラム式増圧装置を 用いており、最大 3MPa までセル圧を載荷することが可能 である。供試体寸法は直径 35mm、高さ 80mmの円柱形で ある。成形した供試体をセルに設置後、背圧を 200kPa 作 用させて飽和化を行う。その後圧密を行い、非排水条件で せん断試験を実施した。載荷速度は 0.1%/min のひずみ速 度制御とした。

4. 試験結果

4.1 CRS 圧密試験

図1に鉛直に切り出した再構成粘土と練返し粘土のCRS 圧密試験結果を示す。再構成粘土では 100kPa の上載圧で 予圧密した履歴を反映して,明確に 100kPa 程度の圧密降 伏応力が観察できる。圧縮曲線の高拘束圧領域を含む曲線

(青の破線)を正規圧密曲線(NCL)と考える。一方,練 返し粘土は、予圧密後の過圧密状態にある再構成粘土を、 その間隙比のまま練り返したものであり、かつ、予圧密時 の履歴も完全に消去されてしまっている。そのため、 100kPa 程度まで圧密しても NCL 上に戻ることができず、

いつまでも過圧密状態が続いている。また,再構成粘土の 圧縮曲線で観察される「嵩張り」は観察できず,明確な pc も分からない。それぞれの圧密曲線は圧密圧力 800kPa 付 近で重なっており,その付近であれば練返し履歴が消去さ れるものと推測できる。

図4 再構成粘土と練返し試料の三軸圧縮・伸張試験結果

4.2 三軸試験

図2は再構成粘土と練返し粘土の三軸圧縮試験結果であ る。切り出し方向の異なる再構成粘土の試験結果を比較す ると,予圧密時と最大主応力方向を一致させている鉛直供 試体の方が,予圧密時の圧密方向と直交するように切り出 した水平供試体よりも軸差応力が若干大きく現れている。 これは、予圧密時の異方圧密履歴の影響と考えられるが、 初期有効拘束圧が大きくなるに従い, 鉛直供試体と水平供 試体との軸差応力の差が縮まる。また, 軸差応力は単調に 増加しつつ限界状態線に到達し,そのまま試験が終了して いる。一方,練返し粘土では,限界状態線付近までは,再 構成粘土とほぼ同様のダイレイタンシー挙動を呈してい るが,最終段階で急激に正のダイレイタンシーが発現し, 軸差応力が増加するいわゆる「巻き返し」が見られる。再 構成粘土と練返し粘土は、供試体作製時の間隙比は同一で あるが、練返し粘土は CRS 圧密試験結果からもわかるよ うに,等方圧密中の体積変化が大きく,非排水せん断時の 間隙比は再構成粘土よりも小さくなる。

図3に軸差応力 q~平均有効応力 p'~体積比 v(=1+e) の空間上で表した有効応力経路を示す。限界状態線は同一 と見ることができ、それぞれの体積比(間隙比)に応じた 限界状態を目指して軸差応力が増加してゆくものと考え られる。

図4は拘束圧200kPaで実施した三軸圧縮および伸張試験の結果である。三軸伸張試験では、水平供試体の方が若 干であるが、鉛直供試体よりも軸差応力が大きくなってい る。練返し供試体は、三軸圧縮試験と同様に「巻き返し」 の挙動を示している。伸張側でも、再構成粘土と練返し粘 土の破壊応力比は同じであるが、その値は圧縮側に比べて 非常に小さい。この差が圧縮と伸張との明確な強度差とな って現れている。

4.3 単純せん断試験

図5に単純せん断試験結果を示す。この試験においても、 再構成粘土のせん断応力は単調に増加しながら、限界状態 線に達している。一方、練返し粘土には、試験後半で「巻 き返し」の傾向が観察される。破壊応力比は再構成粘土と 練返し粘土ともに同一となる。

4.4 三軸試験と単純せん断試験の比較

図6にすべての試験結果を併せて、同一尺度で比較する ために, 偏差応力テンソルの第2不変量、2J, (以下, 偏差 応力と呼ぶ)と偏差ひずみテンソルの第2不変量 & (以下, 偏差ひずみ)を用いて示す。有効応力経路を見ると、三軸 圧縮,単純せん断,三軸伸張の順に破壊応力比が小さくな っており、載荷モードによって顕著な差が生じている。 再 構成粘土の切り出し方向による強度差がわずかだったこ とから, 三軸圧縮・伸張の大きな強度差は, 初期異方性に よるものではなく,誘導異方性や中間主応力の影響による ものと考えられる。以上の実験結果より、練返し粘土で観 察された「巻き返し」の挙動について, CRS 圧密試験結 果から考察すると,予圧密によって過圧密状態にある再構 成粘土を練り返すことにより,先行圧密履歴が解消され, より過圧密化するためであると考えられる。そのため,練 返し粘土が完全な正規圧密状態となる高拘束圧まで圧密 することにより,再構成粘土と同様の力学挙動が得られる のかどうか、次節の高圧三軸試験によって確認する。

4.5 高圧三軸試験

図 7 に再構成粘土と練返し粘土を用いて実施した高圧 三軸試験結果を示す。比較のため,図2の三軸試験結果を 加えてある。高圧三軸試験結果では,試験開始時に全応力 線に沿って軸差応力が増加しているが,その後は間隙水圧 が発生して有効応力が減少し,限界状態に達している。こ れは, 圧密過程の前段階で背圧を作用させて飽和化を行っ ているが,二重負圧法を行っていないため,供試体が完全 に飽和していないからだと考えられる。破壊応力比は図2 に示した三軸試験結果と同じである。また,練返し粘土で は試験終盤で「巻き返し」の挙動が見られた。CRS 圧密試 験結果より, 高拘束圧まで圧密を行い, 試験を実施するこ とで「巻き返し」の度合いが小さくなると考えられたが, 今回の試験では,練返し粘土の作製時に,含水比が予圧密 時点での値よりも低くなり、間隙比も小さくなってしまっ たため、有効拘束圧 500kPa 程度でも「巻き返し」の挙動 が観察されたと考えられる。

5. まとめ

再構成粘土を用いて各種応力履歴による力学特性の検 討を行った。初期異方性について検討するため,切り出し

図7 再構成粘土と練返し試料の試験方法の違いによる比較

方向の異なる供試体を用いて三軸試験を実施した結果,強 度差にあまり差は見られなかった。しかし,三軸圧縮試験 と伸張試験ではせん断モードの影響により大きな強度差 が観察された。この試験結果に関連する現象として,不攪 乱自然堆積粘土の大きなひずみ軟化挙動も三軸圧縮試験 でしか観察できない¹⁾。一方,鋭敏性について検討するた め,練返し粘土を用いて実施した三軸試験・単純せん断試 験では,どちらの試験結果においても試験終盤で正のダイ レイタンシーが発生し,「巻き返し」の挙動が観察された。 今後は,高圧三軸試験の試験条件を見直しつつ,追加実験 を実施する予定である。

参考文献

三好ら:高塑性粘土の力学特性に及ぼす種々の要因についての実験的検討,第22回中部地盤工学シンポジウム論文集,2010

管中混合固化処理工法を想定したセメント改良土の力学挙動の把握と 弾塑性力学に基づく解釈

Elasto-plastic interpretation of mechanical behavior of the dredged soil treated by Pneumatic Flow Method

依田広貴¹, 中野正樹¹, 山田正太郎¹, 堀内俊輔², 笹山哲司¹

1 名古屋大学大学院・工学研究科社会基盤工学専攻・yoda@soil.civil.nagoya-u.ac.jp

2 東日本旅客鉄道(株)·仙台支社

概 要

浚渫土を管中混合固化処理工法を施して有効利用することを視野に研究を行った。具体的には、管中混合 固化処理工法を想定して作製したセメント改良土に対し、標準圧密試験および三軸圧縮試験を実施した上 で、骨格構造概念を有する土骨格の弾塑性構成式 SYS Cam-clay model によってその実験結果を再現するこ とを試みた。その結果、セメント添加は、その土に人工的な構造高位化と疑似的な過圧密土化をもたらす として、その効果を解釈できることを示した。また、セメント添加量の違いは過圧密比の違いに反映され やすく、一方で水セメント比の違いは構造の発達程度に反映されやすいことを示した。さらに、三軸試験 を要素試験としてではなく、境界値問題と見做す立場から水〜土連成有限変形解析を実施した。非一様な 変形の影響として、せん断面の発生と共に軸差応カー軸ひずみ関係において急激な荷重低下が生じること を示す一方で、マスとして整理した有効応力経路は構成式が示す有効応力経路と比較的よく似た挙動を示 すことなどを示した。

キーワード:浚渫土砂,改良土,管中混合固化処理工法,構成式応答,境界値問題

1. はじめに

名古屋港では年間 130 万 m³以上の浚渫土砂が発生して いる。浚渫土砂の仮置き場である名古屋港ポートアイラン ド(PI)の受け入れ容量は限界にきている。そこで本研究 のでは、管中混合固化処理工法による PI 浚渫土のセメン ト改良土を有効利用するため、室内試験による改良土の力 学特性の詳細な把握を行い、弾塑性構成モデルによる力学 特性の再現、および改良効果を解釈することを目指す。そ のために、はじめに、セメント改良した浚渫土砂を対象に 実施した標準圧密試験および非排水三軸試験の結果を示 す。これらの実験によって得られたセメント改良土の力学 挙動を、骨格構造の変化を記述可能な弾塑性構成式 SYS Cam-clay model¹⁾を用いて再現しつつ、セメント添加による 改良効果を骨格構造概念および弾塑性力学に基づいて説 明することを試みる。

次に、その結果を踏まえた上で、セメント添加量の違い によって、セメント改良土の力学挙動がどのように変化す るか実験的に調べると共に、その違いを骨格構造概念を有 する弾塑性力学に基づいて説明することを試みる。

また,このように三軸試験を要素試験と見做す立場から

セメント改良士の力学挙動について考察する一方で, 三軸 試験を境界値問題として捉える立場²⁾からも考察する。 具体的には, 三軸試験を要素試験と見做す立場から求めた 材料定数および初期値を用いて, 改めて三軸試験を境界値 問題として解き直すことによって, 非一様な変形が, 三軸 試験結果に与える影響について調べる。

セメント改良土の力学挙動の把握と SYS Cam-clay model による再現

本章では、管中混合固化処理工法を想定して作製したセメ ント改良土に対し、標準圧密試験および三軸試験を実施し た上で、 SYS Cam-clay model によってその実験結果を再 現することを試みる。また、本章では、この試みに先立ち、 一旦セメント固化を施した土を練り返した試料に対して 実験を行うことで、SYS Cam-clay model 弾塑性パラメータ を決定することを試みる。

2.1 浚渫土の物理特性とセメント改良土の配合条件

実験には、名古屋港ポートアイランドで採取した浚渫土 砂を用いた。表1に浚渫土砂の物理特性を示す。細粒分が 96%を超える粘土質の浚渫土である。本研究では、この浚 渫土砂を管中混合固化処理工法によってセメント安定処 理することを想定して実験を行った。適度な流動特性を得 るために、目標フロー値を 90~100mm に設定した。また、 目標強度を養生 28 日の一軸圧縮強度で 100~200kPa に設 定した。これらの目標値を満たすべく決めた配合条件を表 2 に示す。実験は全て養生 28 日の供試体に対して行った。

表 1 浚渫土の物理特性

土粒子密度 $\rho_s[g/cm^3]$	2.67
自然含水比 w _n [%]	50~110
液性限界 wL[%]	52.5
塑性限界 wp[%]	25.1
塑性指数 Ip[%]	27.4
粘土分 [%]	60
シルト分 [%]	36.6
砂分 [%]	3.4
平均粒径 D ₅₀ [mm]	0.002

表 2 セメント改良土の配合条件

	浚渫土含水比	セメント添加量	水セメント比
	w ₀ [%]	$C [kg/m^3]$	W/C
セメント改良土	120	50	14.98

2.2 セメント改良土の力 学挙動

図1にセメント改良土の 標準圧密試験結果を示す。図 中には、比較のために、改良 の対象とした浚渫土の標準 圧密試験結果も示す。フロー 値を満足させた結果、初期間 隙比が大きい状態になって

図 1 標準圧密試験結果

いることが分かる。また、セメント添加の効果によって、 ある程度の応力レベルまでこの間隙比の大きな状態を保 っことができることも分かる。一方、ある応力レベルに達 すると浚渫土に比べて高い圧縮性を示すことが分かる。こ れらのことから、セメント改良土は、構造が発達した状態 でかつ、擬似的に過圧密状態になっていると考えられる。 図2にセメント改良土の非排水三軸試験結果を示す。低

拘束圧では有効応力経路で巻き返し挙動が見られる。また、 拘束圧を挙げていくと、顕著な塑性圧縮を伴う軟化挙動が 見られるようになっている。これらの挙動は構造の発達し た自然堆積粘土に特徴的な挙動である³⁾。したがって、図 2に示す挙動からも、セメント改良土は構造が発達した状 態でかつ擬似的に過圧密状態になっていると考えられる。 また、低拘束圧で巻き返し挙動が見られることから、セメ ント改良土は構造劣化に比べて過圧密の解消が速い試料 であると考えられる。

2.3 練り返したセメント改良土の力学挙動

上記の結果を踏まえ、本稿では、セメント改良土を構造 が発達した過圧密状態にある土として, SYS Cam-clay model によってその挙動を再現することを試みる。SYS Cam-clay model は、練返し正規圧密土の弾塑性挙動を記述 する Cam-clay model をベースに,構造が発達し過圧密にあ る土が塑性変形を受けることで練返し正規圧密土に漸近 してゆく過程を記述する弾塑性構成式である。このモデル では, Cam-clay model に必要な材料定数のことを弾塑性パ ラメータと呼ぶ。通常,自然堆積した粘土に対して SYS Cam-clay model を用いる場合は、その試料を練り返して意 図的に構造を劣化させた試料に対して室内要素試験を行 うことで, 弾塑性パラメータを決定する。セメント改良土 に骨格構造概念を適用する場合,一つの考え方として,セ メント改良土は塑性変形の結果,セメント添加によって得 られた効果を全て喪失し、最終的にセメントを添加する前 の母材(本稿では浚渫土)と同じ状態に帰着すると考える ことができる。しかし、本稿では、セメントが一旦添加さ れると、その土は母材とは異なる土になるとの考え方から、 自然堆積粘土を対象とする場合と同様に,セメント改良土 を練り返した試料に対し実験を行い, 弾塑性パラメータを 決定することを試みる。

図1に一旦固化したセメント改良土(養生28日)を練 り返した試料に対し行った標準圧密試験結果を示す。同図 には練り返す前のセメント改良土と浚渫土の実験結果も 示している。まず,練り返したセメント改良土は浚渫土と 異なる挙動を取っていることがわかる。また,練返したセ メント改良土の圧縮線は比較的直線的な挙動をとってお り,構造の劣化した正規圧密土と言ってよい状態にあると 考えられる。したがって,これらの結果より,一旦セメン トが添加された土は,十分に練り返しても母材には帰らな いことが示唆される。また,セメント改良土の一次元圧縮 挙動は練り返したセメント改良土の一次元圧縮挙動に 徐々に漸近しており,練り返したセメント改良土を基準に とることの妥当性が伺える。

図 3 に練り返したセメント改良土の非排水三軸試験の 結果を示す。同図には、比較のために、浚渫土の非排水三 軸試験結果も示す。練り返したセメント改良土は、練返し 正規圧密粘土に見られる挙動をとっている。その挙動は浚 渫土とよく似ているが、セメント改良土は浚渫土に比べて 明らかに高い間隙比を有しており、やはり一旦セメントが 添加された土は、十分に練り返しても母材には帰らないこ とが見て取れる。

2.4 SYS Cam-clay model によるセメント改良土の力 学挙動の再現

次に, SYS Cam-clay model によりセメント改良土の力学 挙動(図1と2)を再現することを試みる。表3に解析に 用いた材料定数と初期値を示す。表中に示す弾塑性パラメ ータは,図1と3に示す練り返したセメント改良土に対し て実施した実験結果より求めた値である。

試験条件		非排水三軸試験 拘束圧 98.1kPa	標準圧密試験
弾塑性パラメータ			
圧縮指数	λ	0.363	0.363
膨潤指数	к	0.050	0.050
限界状態定数	М	1.600	1.600
NCL の切片	Ν	3.400	3.400
ポアソン比	ν	0.300	0.300
発展則パラメータ			
正規圧密土化指数	М	0.6	0.6
構造劣化指数	а	0.6	0.6
	b	1.0	1.0
	с	1.0	1.0
塑性せん断:塑性圧縮	cs	0.5	0.5
回転硬化指数	br	0.001	0.001
回転硬化限界定数	m _b	0.5	0.5
初期値			
過圧密比	$1/R_0$	20.933	12.254
構造の程度	$1/R_{0}^{*}$	10	10
鉛直応力	$\sigma_{\rm v}$	19.62	39.24
比体積	v ₀	3.753	3.669
応力比	η_0	0	0
初期異方性	ζ0	0	0

表 3 材料定数と初期値結果

図 4 にセメント改良土の一次元圧縮挙動のシミュレー ション結果を示す。図中には練り返したセメント改良土の シミュレーション結果も併せて示す。セメント改良土は, 練り返したセメント改良土よりも大きな間隙比を示して いるが,鉛直応力が増加していくと,徐々に塑性変形量が 大きくなり,ある応力 レベルを過ぎると,次 第に練り返したセメ ント改良土の一次元 圧縮挙動に漸近して ゆく様子が再現され ている。

図 5 にセメント改 良土の非排水せん断 挙動のシミュレーシ

図 4 SYS Cam-clay model による標準圧密試験のシミュレーション結果

ョン結果を示す。解析は、表3に示す拘束圧19.62kPaの 状態から各拘束圧まで等方圧縮する過程も含めて行った。 図5では、図2に示す実験結果と同様に、拘束圧を上げて いくと、巻き返すような挙動から、巻き返さずに塑性圧縮 を伴う軟化挙動を示す挙動に変化してゆく様子が見られ、 実験結果を概ね再現できている。このように、セメント添 加は、その土に人工的な構造高位化と疑似的な過圧密土化 をもたらすとしてその効果を理解できる。

なお,図3の実験結果には練り返したセメント改良土の 限界状態線を示しているが,拘束E 294kPa および 491kPa の結果は q=Mp'よりも上側で塑性圧縮を伴う軟化挙動を 示している。これに対し,図5に示す解析結果は q=Mp' よりも下側で塑性圧縮を伴う軟化挙動を示している。(異 方性による効果を仮に見なければ,)SYS Cam-clay model は限界状態線よりも上側で塑性圧縮を示すことはないた め,実験結果が示す挙動を厳密には再現することができな い。セメント添加量を増加させてゆくとこのような挙動が 卓越して見られるようになってくるため,このような挙動 についても着目して調べて行く必要がある。

SYS Cam-clay model によるセメント添加量の 影響の把握

本章では,第2章の議論を踏まえた上で,セメント添加 量の違いが土の弾塑性力学挙動にどのような影響を及ぼ すか,実験結果とSYS Cam-clay model によるその再現結 果を通して理解することを試みる。

3.1 セメント添加量の比較に用いる配合条件

表4にセメント添加量の影響を比較するためのセメント改良土の配合条件を示す。前述した通り、本稿では管中混合固化処理工法を想定しているため、流動性および強度の確保を考慮した含水比 w=120%、セメント添加量 C=30,50,70kg/m³なる配合条件でセメント改良土を作製した。

表 4	ト セメン	ト添加量の比較に用い	いる配合条件
-----	-------	------------	--------

	浚渫土含水比	セメント添加量	水セメント比
	w ₀ [%]	$C [kg/m^3]$	W/C
		30	25.23
セメント改良土	120	50	14.98
		70	10.63

3.2 セメント改良土の弾塑性パラメータに与えるセメ ント添加量の影響

前述した通り,本論文ではセメント改良土の力学挙動を 再現する際,一旦セメント添加を受けると,その土は母材 とは異なる土になるとの考え方から,固化したセメント改 良土を練り返すことによって弾塑性パラメータを求める。 セメント添加量の違いによって弾塑性パラメータがどの ように変化するか,標準圧密試験および三軸試験によって 調べた。

volume

Specific

図 6 に練り返されたセメン ト改良土の標準圧密試験結果 を示す。全ての添加量におい て比較的直線的な挙動が見ら れ、概ね練返し正規圧密土の 挙動であると言える。また, セメント添加量が増加するほ

図 6 標準圧密試験結果

表	5	材料定数	と初期値
---	---	------	------

脳御神をいうという	,		60 III - L	
理型性ハブメータ		2	処理工	2
固化材添加量		C=30kg/m ³	C=50kg/m ³	C=70kg/m ³
拘束圧		98.1kPa	98.1kPa	98.1kPa
圧縮指数	λ	0.212	0.363	0.511
膨潤指数	к	0.050	0.050	0.030
限界状態定数	М	1.700	1.600	1.650
NCL の切片	Ν	2.700	3.400	4.200
ポアソン比	ν	0.300	0.300	0.300
発展則パラメータ	,			
正規圧密土化指数	m	0.01	0.6	5.0
構造劣化指数	а	0.25	0.6	1.5
	b	1.0	1.0	1.0
	с	1.0	1.0	1.0
塑性せん断:塑性圧縮	cs	0.2	0.5	0.1
回転硬化指数	\mathbf{b}_{r}	0.001	0.001	0.001
回転硬化限界定数	m _b	0.5	0.5	0.5
初期値				
過圧密比	1/R ₀	1.025	20.933	63.753
構造の程度	$1/R_{0}^{*}$	260	10	5
鉛直応力	σ_{v}	19.62	19.62	19.62
比体積	\mathbf{v}_0	3.938	3.753	3.798
応力比	η_0	0	0	0
初期異方性	ζο	0	0	0

図 7 練り返されたセメント改良土の非排水せん断挙動

ど圧縮線の傾き λ および正規圧密線の切片 N の値が大き くなる傾向が見られる.これらのことから,練返し正規圧 密線はセメント添加量の違いに応じて異なることがわか る。図7に練り返されたセメント改良土の非排水せん断試 験結果を示す。いずれのセメント添加量においても,概ね 練返し正規圧密土の挙動が見られる。また,セメント添加 量の違いは限界状態定数 M には大きな変化を与えないこ とがわかる。表5にこれらの実験結果から決めた弾塑性パ ラメータを示す。本研究では上記の実験結果を踏まえて, セメント添加量の違いに応じて異なる弾塑性パラメータ を与えた。セメント添加量の違いは,特に練返し正規圧密 線の切片 N および傾き λ に現れると言える。

3.3 構造の発達程度および過圧密比に与えるセメント 添加量の影響

図 8 にセメント改良土の標準圧密試験結果と SYS Cam-clay model によるその再現結果を示す。図8より,セ メント添加量が増加するほど圧密降伏応力が大きくなる ことが分かる。また,いずれも圧密降伏応力を超えると高 い圧縮性を示す傾向が見られる。図6と比較すると,いず れの添加量においても、セメント添加により,構造の高位 化がもたらされたと考えられる。図8より,SYS Cam-clay model はこれらの傾向を概ね再現できているといえる。た だし,セメント添加量 C=30kg/m³に関しては,解析の方が, 圧縮線が低い位置にあるが,別途行った他の浚渫土を用い た実験結果と比較した結果,実験において比体積が少し大 きく出てしまった可能性があると考えている。

図 8 練り返されたセメント改良土の非排水せん断挙動

図 9 にセメント改良土の非排水せん断試験結果と SYS Cam-clay model によるその再現結果を示す。まず,実験結 果に着目すると,図 9(A)では,塑性圧縮を伴う軟化が見ら れることから,セメント改良土は高位な構造を有している と見做すことができる。図 9(B)では,低い拘束圧では巻き 返し挙動を示すが,拘束圧を上げると巻き返さずに軟化す ることから,初期に過圧密な状態にあることも分かる。ま た,図 9(C)では,塑性膨張を伴う硬化挙動がはっきりと見 られることから, C=70kg/m³は過圧密比の高い状態にある ことが分かる。解析結果に目を移してみると,SYS Cam-clay model はこれらの挙動を概ね再現している。ただ し,C=70kg/m³ではテンションカットオフライン (q=3p³) に有効応力が達しているが,解析結果はこのような高い応 力比に達していない。

表 5 に解析に用いた SYS Cam-clay model の材料定数と

図 9 セメント改良士の非排水せん断挙動と
 SYS Cam-clay model によるその再現

初期値を示す。まず,いずれの改良土においてもセメント 添加によって人工的な構造の高位化と疑似的な過圧密土 化がもたらされていることが見て取れる。また,セメント 添加量の増加によって過圧密比が増加することが分かる。 一方で,構造の発達程度はセメント添加量の増加によって 逆に低下していることがわかる。これは,今回の配合条件 では浚渫土の含水比を一定にした結果,セメント添加量が 大きくなるほど,水セメント比が小さくなっていることに 対応していると考えられる。

水~土連成有限変形解析による三軸試験の数値 シミュレーション

以上では、三軸試験を要素試験と見做す立場から、セメ ント改良土の力学挙動を解釈することを試みてきた。本章 では、三軸試験を境界値問題と見做す立場に立って、セメ ント改良土の力学挙動について改めて議論する。

4.1 解析条件

三軸試験を境界値問題とし て取り扱うにあたり, 土骨格の 構成式に SYS Cam-clay model を搭載する水〜土連成有限変 形解析コード GEOASIA⁴⁾を用 いた。図 10 に有限要素メッシ ュおよび境界条件を示す。解析 は平面ひずみ条件で行った。供 試体の周囲を非排水境界とし, 上下端面はキャップとペデス タルが剛で摩擦のある条件と した。供試体側面には幾何学的

≤ 10 有限要素メツンコ と境界条件

な初期不整として,振幅 0.005cm の余弦カーブ(半周期) で与えられる 1 次の非対称モード²⁾を与えた。せん断速度 は 1.4×10^{-2} %/min として,供試体上端面に下向きの変位速 度を与えた。解析の対象とした実験は図 2 の *C*=50kg/m³, 拘束圧 98kPa と 294kPa の場合である。三軸試験を要素試 験と見做す立場に立って求めた SYS Cam-clay model の材 料定数および初期値(表 3)を用いて,これらの三軸試験 結果を境界値問題として改めてシミュレーションする。

4.2 解析結果

拘束圧 98kPa の場合に対し,供試体をひとつの要素と見 做して整理した解析結果を図 11 に, せん断ひずみ分布の 推移図を図 12 に示す。図 11 には,構成式の応答も併せて 示した。図 11 の軸差応力ー軸ひずみ関係からは,軸ひず み 3~4%付近で急激な軸差応力の低下が見られる。図 12 のせん断ひずみ分布には軸ひずみ 4%で袈裟がけ状のせん 断面が見られることから,明確な荷重低下はこのせん断面 の発生に伴うものであることが分かる。図 2 に示す実験結 果でも,やはり軸ひずみ 2%付近で荷重低下する様子が見 られる。実験と解析では,荷重低下の大きさにこそ違いが 見られるが、実験においてもせん断面が入った影響で荷重 低下が生じたものと考えられる。図12では、軸ひずみ7% 付近から縦に割裂するようにひずみの局所化が伸展して ゆく様子が見られるが、その影響は、マスとしての挙動に 大きな影響を及ぼしていない。写真1に図10に示す実験 に用いた供試体のせん断後の様子を示す。解析で最終的に 非対称な破壊形状が示されるのと同様に、実験後の供試体 でも一本の袈裟がけ状のせん断面が確認できる。

次に、拘束圧 294kPa の場合に対し、供試体をひとつの 要素と見做して整理した解析結果を図 13 に、せん断ひず み分布の推移図を図 14 に示す。図 13 には、構成式の応答 も併せて示した。図 13 の軸差応力ー軸ひずみ関係からは、 軸ひずみ 3%付近と 6%を過ぎた付近で急激な軸差応力の 低下が見られる。図 14 のせん断ひずみ分布でははじめ袈 裟がけ状のせん断面が入った後、反対方向にもせん断面入 り、最終的に X 字のせん断面が形成されている様子が見 て取れる。せん断面の発生と荷重低下のタイミングが合っ ていることから、荷重低下の要因はせん断面の発生にある ことが分かる。図 2 に示す実験結果では、やはり解析結果 ほど大きくはないが、荷重低下が発生している。図 2 では、

図 11 構成式およびマスとしての非排水せん断挙動(拘束圧98kPa)

Deviator

Deviator

図 13 構成式およびマスとしての非排水せん断挙動(拘束圧294kPa)

軸ひずみ 7~8%付近ではっきりとした荷重低下が生じて いるが、5%付近でも僅かに荷重低下していることが見て 取れる。写真2に図2に示す実験に用いた供試体のせん断 後の様子を示す。実験同様、最終的にX字のせん断面が 形成されている様子を見て取ることができる。

5. おわりに

セメント添加による改良効果を,実験結果および骨格構 造概念を有する弾塑性構成式 SYS Cam-clay model に基づ いて説明することを試みた。結果として,セメント添加は, その土に人工的な構造高位化と疑似的な過圧密土化をも たらすとしてその効果を理解できることが分かった。

また,セメント添加量の違いによるセメント改良土の力 学挙動の変化については,セメント添加量が多くなるほど 練返し正規圧密線の切片Nおよび傾きλが大きくなること が分かった。また,セメント添加量の違いは過圧密比の違 いに反映されやすく,一方で水セメント比の違いは構造の 発達程度に反映されやすいことが分かった。

さらに,三軸試験を境界値問題として見做す立場からせ ん断面の発生と共に急激な荷重低下が生じる様子を示す 一方で,供試体を一つの要素と見做して得た有効応力経路 が構成式の応答から極端に離れたものでないことを示し た。加えて,三軸試験を要素試験とみなして与えた材料定 数および初期値を用いて解析を行った結果,実験と解析で 符合するような破壊形状が得られたりすることも示した。

今後も,三軸試験で得られた結果を,要素試験と境界値 問題の両方の視点を持って,セメント改良土本来の性質を 見定めてゆきたい。

参考文献

- Asaoka, et al. (2002): An elasto-plasticelasto-plastic description of two distinct volume change mechanisms of soils, S&F 42(5), 47-57.
- Asaoka et al. (1995): Imperfection-sensitive bifurcation of Cam-clay under plane strain compression with undrained boundaries, S&F 35(1) 83-100.
- Asaoka, et al. (2001): The loss of structure and the decay of overconsolidation, *Proc. 15th ICSMGE*, Istanbul, Turkey, 19-22.
- Noda et al. (2008): Soil-water coupled finite deformation analysis based on a rate-type equation of motion incorporating the SYS Cam-clay model, S&F, 48(6), 771-790.

午前の部Ⅱ (11:00~12:00)

司 会 檜尾 正也(名古屋大学)

応力波を考慮した落石による緩衝砂の衝撃伝達特性のDEM解析

DEM analysis of impact transmission characteristic from rockfall of granular mat with stress wave

羽柴寬文¹,前田健一²,刈田圭一³,牛渡裕二³,川瀬良司³

- 1 名古屋工業大学大学院・工学研究科・22418559@stn.nitech.ac.jp
- 2 名古屋工業大学・都市社会工学科
- 3 構研エンジニアリング 防災施設部

概 要

我が国において毎年多くの落石事故が発生しており、地震の多発も起因して落石発生件数は増加傾向にあ る。最近ではその対応として、落石エネルギーを分散・低減させる緩衝砂に注目が集まっている。そこで 本研究では、緩衝砂のような粒状性の堆積層の落石エネルギー低減性能に着目し、堆積層の粒子特性、密 度、層厚や落体の運動特性の影響について、個別要素法(DEM)を用いた数値解析を行い、衝撃伝達特性 の考察を行った。落石による落体の受ける衝撃力と底面に伝播する衝撃力について、解析結果と模型実験 結果を比較し DEM 解析が定量的に衝撃力特性を表現可能であることを示した上で、落体が衝突したときの 堆積層内の応力・ひずみ分布やエネルギー消散との関係について調べた。また、堆積層内を衝撃力が伝播 するメカニズムを考察するにあたり、衝撃の伝達速度が深く関与していると考え、伝達速度が堆積層の密 度や層厚に左右されることを確認した。

キーワード:緩衝砂,個別要素法 (DEM),落石,緩衝効果,応力波

1. はじめに

我が国において,気象変動による降雨条件の変化や地震 の多発も起因して落石発生件数は増加傾向にある。近年で は,落石災害を防ぐ対策工は経年劣化に対応できず,安全 余裕度が低下している。その対応として,落石が防護工に 衝突する前に落石エネルギーを分散・低減させる工法であ る落石防護ネットや敷砂堆積層に注目が集まっている。

そこで本研究では、堆積層の落石エネルギー低減性能に 着目し、落石による粒状性の堆積層内の衝撃力伝達挙動に ついて個別要素法(Discrete Element Method,以下 DEM と 略す)¹⁾⁻³⁾を用いて調べた。著者らは、落石による落体の 受ける衝撃力(落石衝撃力)と底面に伝達する衝撃力(伝 達衝撃力)について、解析結果と1/2スケールの模型実験 結果を比較し、DEM 解析が定量的に衝撃力を表現可能で あることを示し、DEM の有用性を確認した^{4,5)}。

以上を踏まえ、本論文では最大衝撃力に及ぼす影響について DEM 解析による数値実験を行い検討することとした。 さらに、層厚や密度が異なる堆積層に伝達する衝撃力の時 刻歴と堆積層内の応力・ひずみ分布やエネルギー消散との 関係について調べた。落石は本来、堆積層に回転を伴う斜 めに入射することが一般的であると考えられるが、本論文 では大きな衝撃力を伝達すると考えられる鉛直落下の結 果のみを記述する。

2. 解析手法

2.1 DEM解析の概要

本論文では、要素間の接触モデルに垂直・接線方向のバネやダッシュポット、接線方向のスライダーといった通常のモデルを使った 2 次元 DEM 解析を行った。用いた解析パラメータは、粒子集合体の特性と粒子特性との関係^{の-9)}を考慮して決定することとした。ここで、接触面垂直方向と接線方向のそれぞれのばね定数 k_n と k_s の比は $k_n/k_s=4$ とし、粒子はそれぞれ、最大粒径 D_{max} と最小粒径 D_{min} の間で一様な発生確率で発生させた。

表-1 DEM 解析に用いた基本的な接触モデルパラメータ

パラメータ	記号 (単位)	設定値
粒子直径	D (m) 最大粒径 D _{max} 最大粒径 D _{min} 平均粒径 D ₅₀	0.050 0.025 0.0375
粒子の密度	$ ho_s~(\mathrm{kg/m^3})$	2700
接触面法線方向バネ定数	k_n (N/m)	5.0×10 ⁷
接触面接線方向バネ定数	<i>k</i> _s (N/m)	1.25×107
接触面法線方向減衰定数	$h_{ m n}$	1.0
接触面接線方向減衰定数	<u>h</u> s	1.0
粒子間摩擦角	ϕ_{μ} (deg.)	25

図-1 DEM 解析モデル: (a)解析パラメータ; (b)メッシュを用い た応力・ひずみ増分・間隙比の算定

図-1に,解析領域の概要を示す(x軸, y軸は図中に示 す)。本論文では,底面と側面の境界の粒子位置は固定と した。落体形状も円形とした。落体に作用する衝撃力を落 石衝撃力,底面粒子が底面境界に伝達する力の和を伝達衝 撃力と呼ぶことにする。また,落体の直径 D^f=1.0m,質 量 M^f=2000kg としている。落下高さ H=10m を基本として いるので,落下時の入力エネルギーは 1960kJ となる。

図-2には、落下に伴う、落石衝撃力と堆積層の底面で の伝達衝撃力の時刻歴の例を示している。図の場合には伝 達衝撃力のピーク値は落石衝撃力のピーク値の 8 割程度 にも達しているが, 落下模型実験など三次元条件下では, 実験条件によっては伝達衝撃力のピーク値は落石衝撃力 の2倍程度に達することも報告されている4),5),10)。本二 次元解析結果で落石衝撃力と伝達衝撃力が同程度である 場合,三次元の軸対象条件では伝達衝撃力が大きくなると 考えられるため,解析結果と実験結果との傾向は一致して いるといえる^{4),5)}。また,堆積層厚が薄い場合(T=0.25m, 図-2(a))には,落石衝撃力は大きな山形の波形が一波で、 伝達衝撃力のピーク発現と落石衝撃力のピーク発現とほ とんど時間差は10ms以下である。一方、堆積層厚が十分 厚い場合(T=2.00m,図-2(b))には、落石衝撃力の波形 は二つの山を示し、二つ目の山は伝達衝撃力のピーク発現 後に現れている。これらの傾向は実験によっても観察され ている¹⁰⁾。以上のことからも、堆積層における衝撃力の伝 播メカニズムを明らかにするには、衝撃力のピーク値や伝 達速度が堆積条件や粒子特性にどのように影響するのか を明らかにする必要がある。

図-2 DEM 解析モデルから得られた典型的な衝撃力の波形: (a) 堆積層が薄い場合(*T*=0.25m); (b)堆積層が厚い場合(*T*=2m)

2.2 メッシュ分割による応力の算定

DEM によって粒子間の接点力が得られるが,応力で観察する方が議論しやすい。そこで,図-1(b)のように,堆 積層を適当なメッシュ領域(0.1m×0.1m)で分割し,粒子 単位で求められた応力を面積平均することでメッシュ内 に作用する応力を算出した¹¹⁾⁻¹²⁾。

図-3 (a) は落下解析で得られた結果について, 粒子単 位応力, 図-3 (b) はメッシュ単位応力の可視化した例で ある。図-3 中の応力は, 垂直応力 $\sigma_{xx} \ge \sigma_{yy} \ge 0$ 平均直 応力 $\sigma_m = (\sigma_{xx} + \sigma_{yy})/2$ である。この操作によって, DEM で も応力単位の議論が可能である。図から分かるように, 落 体が十分に貫入した際には落体直下の堆積層だけでなく, 側方や上方に粒子が押され, 支持力問題の全般破壊的な挙 動を示している。

図-3 粒子単位で平均化された応力とメッシュ単位で平均化された応力の算定例;(a)粒子単位,(b)メッシュ単位

衝撃力に及ぼす粒子特性や堆積特性の影響

3.1 ばね係数の影響

本論文では特に断りがない場合には、堆積層は W=4.0m, T=0.9m で緩詰め (e = 0.245),落体特性 D^{f} =1.0m,落下条 件として H=10m としている。また、落石衝撃力の第1波 目のピーク値と伝達衝撃力のピーク値について着目する。

粒子間の衝撃力を調節するバネ係数は、衝撃の伝達においてきわめて重要な役割を担っていると考え、バネ係数 k_n を2.0×10~1.0×10⁴ (MN/m)の広範な値の6ケース用意した。また、堆積層の特性は構成する粒子のサイズにも依存するので、最大粒径 D_{max} =0.0250m、最小粒径 D_{min} =0.0125mと D_{max} =0.0500m, D_{min} =0.0250mの2ケースを設定した。

図-4は最大衝撃力に及ぼすバネ係数の影響を示している。バネ定数が高く堆積層の剛性が高いほど落石・伝達衝撃力ともに大きくなることが分かる。粒子サイズに関わらず同様の傾向を示しているが、粒径が大きい方が衝撃力は大きい。また、2次元解析では、伝達衝撃力と落石衝撃力はほぼ同等でありが、バネ定数が大きい場合には、伝達衝撃力の方が落石衝撃力よりも若干大きい場合が見受けられる。さらに、バネ係数 k_n が 5×10⁸ (N/m) 程度よりも大きくなると、衝撃力の値がほぼ収束していることが分かる。衝撃力に影響を与えると考えられる堆積層の変形・破壊特性は、粒子の弾性と粒子の相対運動およびその抵抗によって決定される。上記の結果から、パラメータ算定時にバネ定数 k_n が 5×10⁸ (N/m) 以上の値となった場合でも、最大衝撃力に着目するのであれば、 k_n を 5×10⁸ (N/m) 程度と

して,計算負荷をさけることも可能といえる。衝撃継続時 間については別途検討を要する。

3.2 堆積層の層厚,層幅の影響

堆積層厚は、ロックシェッドなど下部構造物において設計上重要な検討項目である。落石対策便覧では、層厚Tに対する落体径D^fの比(T/D^f)が小さい程、衝撃力が上昇する程度を割増し係数で考慮しているが、これは落石衝撃力に対するもので伝達衝撃力に関しては明記されていない。

これらを鑑み、 $T/D^{f}=0.25\sim2.0, W/D^{f}=2.0\sim12$ (Wは堆 積層の幅)といった堆積層の幾何特性が、最大衝撃力に及 ぼす影響を図-5に示す。図から、 W/D^{f} による差は、図-5(a)の $W/D^{f}=2$ のケースを除き、衝撃力は T/D^{f} が小さい 程、衝撃力が大きくなることが確認された。特に $T/D^{f}>0.5$ の領域では、層厚が厚くなることによる衝撃力の低下が明 瞭である。また、バネ定数の大きな図-6(b)の方が、W/Dによる衝撃力の大きさ違いは少ない。バネ定数が大きく、 堆積層の力学挙動が粒子配列およびその変化に起因する 割合が高くなるほど、離散体としての特徴が支配的になる と言える。

つぎに、堆積層内の力の分散特性に着目し、伝達衝撃力 最大時の底面における伝達応力(鉛直垂直成分)分布状況 を調べた(図-6)。その結果、分布形状は $T/D^{f} = 0.5$ では 載荷直下を中心に極めて局所化する傾向が明らかとなっ た。分散幅 1.5m とすると、落体の横端を通る鉛直線と落 体の横端から応力分布の端を結ぶ直線とがなす角である 分散角度は 27 度程度である。また $T/D^{f} = 0.9 \ge 1.5$ では 分布形はあまり変わらない。よって、 $T/D^{f} < 0.9$ では、大 応力値がより大きくなる可能性があると言える。

図-5 最大衝撃力に及ぼす層厚比 T/D^fと層幅比の影響; (a) k_n= 50MN/m, (b) k_n= 500MN/m

図-6 底面伝達応力分布(鉛直垂直成分)に及ぼす堆積層の層 厚の影響: k_n= 50MN/m, W/D^f =4

3.3 堆積層の密度の影響

図-7は衝撃力波形に及ぼす堆積層の密度の影響を示し ている。密詰め(間隙比 e=0.214)と緩詰め(間隙比 e=0.245) の結果を比較すると,緩詰めの方が衝撃力の継続時間も長 く,最大衝撃力の値は小さくなる。通常の緩衝材と同様に, 剛性が低い緩い堆積層の方が,緩衝効果が高いと理解でき る。また,図には落体が持つ総エネルギー(位置エネルギ ーと並進運動エネルギーの和)を初期総エネルギーで正規 化したエネルギー比の時刻歴も示している。密詰めの場合, 最大落体衝撃力が示される時にはエネルギーは初期の 70%,最大伝達衝撃力の時にはエネルギーは初期の 30%ま で低下している。一方,緩詰めの場合にはそれぞれ 80%と 60%程度となっている。最大衝撃力時のエネルギー緩衝度 は密詰めの場合の方が高くなっている。

さらに、底面境界での伝達鉛直応力(鉛直垂直成分)の 水平方向への分布特性に及ぼす堆積層の密度の影響を図 -8に示す。図は密詰めと緩詰めのそれぞれの場合につい て、底面の伝達衝撃力のピーク前、ピーク時、ピーク後の 分布である。層厚の影響(図-6)に比べると程度は小さ いが、緩詰めの方が落体直下に集中している様子が分かる。 基礎の静的な載荷においても、緩い地盤の方が基礎直下に 局所的な変形・破壊が生じることと対応しているのではな いかと推察される。

図-7 最大衝撃力に及ぼす堆積層の密度の影響; (a)密詰め, (b) 緩詰め

図-8 底面の伝達応力分布(鉛直垂直成分)に及ぼす堆積層の 密度の影響: (a) 伝達衝撃力のピーク前, (b) ピーク時, (c) ピー ク後

図-9 衝撃力,落体のエネルギー消散と堆積層の変状および応力伝達の経時変化

4. 衝撃力伝播挙動に及ぼす粒子特性や堆積特性 の影響

4.1 衝撃力の発生と堆積層の変状

衝撃力の発現と堆積層内の変形の様子を比較した例を 図-9に示す(図-7(b)の緩詰めケース)。図は上から順に 落体が時間ごとに貫入していく様子を表し,左の列のグラ フは落石衝撃力,伝達衝撃力,落体の総エネルギー比の推 移をそれぞれ描いたものである。経過時間の部分を緑色の 点線で示している。中央列の図は,落体と堆積層の様子を 粒子レベルで示し,右列の図は粒子単位の応力(赤色ほど 平均主応力が高い粒子)を表し,応力鎖を見ることができ る。

落体が堆積層に衝突してから,落石衝撃力がピークに達 するまでの時間は短く(左列の図),落体径の数パーセン トが貫入する間である(中央の列の図)。この時点で,落 体の総エネルギー比は 80%で,落体のエネルギー消散は 20%程度である。応力の高い粒子の繋がりである応力鎖は 落体底面の堆積層の表面から底面に向かって伸びていく ことが分かる(一番右列の図)。最も高い応力を持つ応力 鎖(図中の赤色の応力鎖)が堆積層底面に完全に到達する 前に落石衝撃力のピークが発生していることが確認され る。中央の列の図から,落体の下に位置する堆積層の部分 では,間隙が小さくなり堆積層の密度が高くなっているこ とも分かる。

その後、応力鎖が斜め下方に拡がり始め、落石衝撃力の 第二回目のピーク、伝達衝撃力のピークが発現している。 貫入量は落体径の約 1/4 程度である。落体の総エネルギー 比は約20%程度なり、エネルギー消散は約80%に達する。

さらに、貫入量が落体径の1/2程度になり、堆積層の粒 子も側方に移動、落体周りでは堆積層表面の盛り上がりも みられる。高い応力を受け持つ応力鎖は広範囲に拡がって いる。堆積層内に伝達した衝撃力はほとんど拡散し、落体 のエネルギーも消散している。

一方,堆積層内の粒子の動きは,地盤の支持力破壊¹⁴⁾の様子と類似している。落石と堆積層との間のエネルギー 消散特性が,地盤の支持力問題における全般せん断破壊や 局所破壊の破壊モードにおけるエネルギー消散と関連す るのではないか,ということが伺える。3.1 小節,3.2 小 節で議論したような,落体径と堆積層との幾何学条件(粒 子径,幅,層厚)が衝撃力特性に及ぼす影響についても, 上記のような破壊モードや破壊領域の大きさなどを基に 議論可能であると言える。全般破壊では,破壊領域の深さ は基礎幅と同等,側方への影響範囲は基礎幅の4-5 倍程度 とされている(落石の場合,直径 D^fが基礎幅に相当する と考えられる)。しかし,落石衝撃力の二つのピーク値の 発生,伝達衝撃力が落石衝撃力に比べて比較的大きいこと, などを理解するには,単なる静的な支持力問題との類似

(せん断破壊現象)からだけでは解決しないと考えられる。 上記までの考察から,堆積層の衝撃力伝達やエネルギー 吸収のメカニズム解明には,落体下の堆積層内の塑性変形, せん断破壊,応力波の伝播からの視点が必要と考えられる。

4.2 衝撃力の発生と応力の伝播速度

図-1(b)のように落体の鉛直下に位置するメッシュ内 (メッシュ番号が地表面から9から1)の応力波形の深さ 方向への伝達の様子を図-10 に示す(メッシュの高さは 0.1m である)。図中には、比較しやすいように、落石衝撃 力と伝達衝撃力を深さ0mと0.95mの箇所に破線で示して いる。浅い方から順に応力が波のように伝達している様子 がわかる。落体直下での伝達応力の時刻歴波形は大きな山 を有しており,深さ方向にそのピーク値は減少しながら伝 達している。堆積層が密な方(図-10(a))が山一つの形 状(ピーク付近では凹凸がある)となっており、緩くなる と(図-10(b))同程度のピーク値を持つ山が二つ連なっ た形状となることが分かる。後続のピークの存在が落石・ 伝達衝撃力波形を特徴付けていると考えることができる。 二つ目の山は境界からの反射波と考えることもできる。落 石・伝達衝撃力波形を理解するには深さ方向に伝播する応 力波と境界からの反射波も考慮して検討する必要がある。

図-10 落体直下の応力波の伝達挙動に及ぼす堆積層の密度の 影響:(a)密詰め堆積層;(b)緩詰め堆積層

図-12 応力の伝播速度に及ぼすバネ定数の影響: (a)相対層厚が 薄い場合 (T/D^f=0.25); (b)相対層厚が厚い場合 (T/D^f=2.0)

図-13 応力の伝播速度に及ぼす層厚の影響(kn=5×10⁸ N/m)

4.3 応力の伝播速度と弾塑性波

衝撃力の伝播の速さについて調べるために図-11 のような伝播時間差に着目した。落石衝撃力の第1ピーク値と 伝達衝撃力のピーク値が現れる時間差Δt₁と落石衝撃力の 第1ピーク値と第2ピーク値が現れる時間差Δt₂とに着目 した。これらの時間差は力積の作用時間でもあることから, 初期に有する位置エネルギーが等しいので,時間差が大き くなることは衝撃力の最大値が小さくなることを意味す る。さらに,前者については応力の波が伝達する距離を堆 積層厚のT,後者については層厚の2倍の2Tと考えると, それぞれの平均的な伝播速度は、 $V_1=T/\Delta t_1 \ge V_2=2T/\Delta t_2 \ge$ なる。ただし、図-2(a)のように落体衝撃力の第2ピーク 値が明確でないときには $V_2=2T/\Delta t_2$ は考えないものとした。

図-12には上記のように求めた伝播速度 V1, V2に及ぼ すバネ定数の影響について,相対層厚 T/D fを 0.25 と 2.0 の場合について示している。これらの伝播速度は前節まで の考察から塑性を含む弾塑性波によるものと考えられる。 図中には、あくまでも参考のために、一次元弾性波動理論 を用いて設定したバネ定数に相当する堆積層の弾性の縦 波速度 V. とせん断波速度 V. をそれぞれ黒の実線と破線で 示している。両速度の値には大きい相違はないが、V,の 方が若干大きい。また、バネ定数が大きい場合ほど伝播速 度が大きくなる。ただし, T/D^fが 0.25 と 2.0 では, 層厚 が薄い方の速度が厚い方の速度より4倍ほど大きい。層厚 の薄い場合 ($T/D^{f}=0.25$) では弾性波と同等もしくはそれ より大きな伝播速度を示し、厚い場合(T/D^f=2.05)には せん断弾性波速度の1/2程度である。層厚が薄い場合には、 堆積層内の局所的な変形が拘束され,落体の下では堆積層 が圧縮し密になることで局部的な塑性変形やせん断破壊 が起きにくくなると考えられる。その結果, 層厚が薄い場 合, 堆積層内に応力が速く伝播すると考えられる。

さらに、層厚の影響を詳細に調べるために、図-13 に 平均的な伝播速度と相対層厚 T/D^fとの関係を示す。図中 には、図-12と同様に、参考のためにバネ定数 kn=50MN/m に対応する一次元弾性波速度を示している。相対層厚が大 きくなるほど、伝播速度が低下する。特に、T/D^f < 0.5 と $T/D^{f} > 0.9$ では顕著である。つまり、平均的な応力の伝播 速度が小さくなり衝撃継続時間が長くなることで,最大衝 撃力が低下したと捉えることもできる。また,T/D^fが1.0 より大きい場合には 20m/s 程度まで低下している。これは, 弾性波速度よりもずいぶんと小さい。衝撃力の伝播が弾性 波でなく、4.1 小節で観察したような塑性変形に従い応力 が伝播するためと考えられる。伝播速度が低くなるととも に、衝撃力の最大値は小さくなる。現行の設計において堆 積層のエネルギー吸収効果が期待できる条件は経験的に T/D^f >0.9 とされている。限られた条件下ではあるが、上 記の計算結果は現行の経験を支持するものとなっている。

4.4 落体の落下挙動と載荷速度の影響

この項目では、落体の落下挙動と落下速度が衝撃力の伝 達特性に与える影響の検討を行った。図-14 に示す図は 本研究における基本的な DEM モデルで自由落下させた際 の衝撃力と、速度を一定に保って静載荷させた際の衝撃力 を比較したものである。図中で凡例があるものが自由落下 時の落石および伝達衝撃力であり、それ以外が各速度で載 荷した際の落石衝撃力の挙動である。なお、ここで設定し た速度は、5.0、13.6、20、50(m/s)である。13.6m/s という のは、H=10m で自由落下をさせた時の緩衝砂との衝突時 の速度である。

落下速度を一定にするというのは解析上の設定なので, 止めない限り際限なく緩衝砂を押し進むことになるが、初 めに降伏点に至って除荷されるまでの挙動は、図-14 よ り自由落下時の落石衝撃力の挙動と13.6m/sに固定して貫 入させた際の落石衝撃力の挙動が、どのパターンにおいて も一致することから、再現できていると考えられる。

ここで、各速度の領域での依存性について図-14より 考察をしてみる。載荷速度 0~5.0m/s のようにゆっくり破 壊が進む場合は、局所的な破壊が起きにくいこともあり、 あまり変化がない。その破壊挙動は塑性的なラインを描く ことが確認できる。速度が上がり、13.6m/s となるころに は完全に弾塑性的な破壊挙動となり,速度依存も非常に大 きくなることが確認できた。落石の衝撃力の問題は、4.3 小節にもある通り,ちょうど緩衝砂の荷重と変位関係の速 度依存が大きな速度領域(弾性波よりも遅く,塑性波が伝 わる速度と載荷速度が近い場合には速度依存が大きい)の なかで起きていると考えられる。これらの挙動は緩衝砂の 破壊モードにも表れており,貫入速度が遅いと緩衝砂を側 方に押し広げるようにして貫入していくのに対し、貫入速 度が速くなっていくほど落体直下の層のみが局所的に圧 縮され、押しぬきのような挙動になる。分散期待された衝 撃力が,十分な緩衝砂の厚さがないとその効果を発揮する ことができないことも、このことから容易に想像できる。 以上より, 落体の落下速度の条件は粒子の条件と同様に, 衝撃力の増減や破壊モードを特定するにあたって非常に 重要な条件である。

図-14 落下速度を固定した場合の衝撃挙動

5. まとめ

本研究では、落石による粒状性の堆積層内の衝撃力伝達 挙動について、2次元個別要素法(DEM)を用いて調べた。 粒子硬度、粒径、粒子形状などの粒子特性、堆積密度や層 厚などの堆積特性がピーク衝撃力に及ぼす影響について 調べた。その結果、以下のことが分かった。

 ばね定数の増加に伴い最大衝撃力は増加するが、堆積 層の離散性の影響が強く 5×10⁸N/m よりも大きくなる あたりから衝撃力の上昇が見られなくなる。つまり、 堆積層の衝撃力の大きさに関しては、5×10⁸N/m を超 えるようなばね係数も用いる必要がない。

- 2) 落体の径に対する堆積層厚の比,相対層厚が大きくなると、伝達衝撃力の最大値はなだらかに増加する。底面における応力分布状況は、層厚が落体径以下の場合には、落石対策便覧が示す土圧分布形状よりも幅が狭く尖った形状となる。今後、衝撃荷重分布は、粒子特性と密度をパラメータに見直していく必要がある。
- 3) 堆積層が緩い程、衝撃力は低下し、伝達衝撃力の方が 密度に影響されやすい。落体の下の堆積層内では伝達 応力の時刻歴波形は最大値を有しており、伝達に伴い その値は小さくなる。密な方はピーク値が一つ現れ、 緩い方では同程度ピーク値が二つ連なった形状を示す。 後者の後続のピークの発現メカニズムを応力波伝播特 性を基に詳細に分析する必要がある。
- 4) 落体の衝撃による応力の伝達は弾塑性波であり、その 伝播速度は、層の硬さだけでなく、層厚の影響を受け、 厚いほど平均的な伝播速度が遅くなる。落下の衝撃に よる層内の局所的な塑性変形や支持力破壊的なせん断 破壊の発現が伝播速度に大きく影響すると考えられる。

6. 謝辞

この研究は、日本学術振興会科学研究費補助金基盤研究 (B) 21360222 の助成を受けており、ここに感謝の意を表し ます。

参考文献

- Cundall, P. A. and O. D. L. Strack. : A Discrete Models for Granular Assemblies, Geotechnique, Vol.29, No.1, pp.47-65, 1979.
- 2) 桝谷浩,中田吉彦,梶川康男:個別要素法の衝撃問題への 適用に関する一考察,構造工学論文集, Vol.38A, pp.1477-1487, 1992.
- 吉田 博, 桝谷 浩, 今井 和昭: 個別要素法による敷砂上への 落石の衝突特性に関する解析, 土木学会論文集, Vol.392/I-9, pp.297-306, 1988.
- 4) 刈田圭一,前田健一,羽柴寛文,牛渡裕二,山口 悟:個別要 素法を用いた水平堆積層における落石による衝撃力の伝播挙 動解析,第10回構造物の衝撃問題に関するシンポジウム論文 集,pp.195-200,2010.
- 5) 羽柴寛文,前田健一,刈田圭一,牛渡裕二,川瀬良司: 粒子特 性の異なる堆積層の落石エネルギー緩衝効果特性に関する二 次元個別要素法解析,第10回構造物の衝撃問題に関するシン ポジウム論文集,pp.229-234,2010.
- 6) 三笠 正人:土の強度と安定計算法,基礎のための土質工学,37 年度講:習会テキスト,1963.
- 7) 伯野 元彦: 破壊のシミュレーション, 森北出版, 2004.
- Maeda, K. and Hirabayashi, H. : Influence of grain properties on macro mechanical behaviors of granular media by DEM, Journal of Applied Mechanics, JSCE, pp.623-630, 2006.
- Maeda, K. et al.: Stress-chain based micromechanics of sand with grain shape effect, Granular Matter, Vol. 12, pp.499-505, 2010.
- 10)山口悟,岸徳光,西弘明,今野久志:敷砂および砕石緩衝材を 用いた大型 RC スラブの重錘落下実験,構造物の衝撃問題に関 するシンポジウム論文集, pp.189-194, 2010.
- 11)平林大輝,福間雅俊,前田健一: 粒子構造に着目した粒状体の 斜面上の流れ,挙動応用力学論文集, Vol.11, pp.535-546, 2008.

個別要素法により挙動を考慮した落石対策に関する信頼性設計に向けた提案 A proposal of reliability based design of rockfall countermeasures using discrete element method

森口周二¹, 大竹雄², 本城勇介², 原隆史², 沢田和秀³

1 岐阜大学・工学部社会基盤工学科・s_mori@gifu-u.ac.jp

2 岐阜大学・工学部社会基盤工学科

3 岐阜大学・流域圏科学研究センター

概 要

近年,構造物の設計には,信頼性設計法に基づいた設計法が重要視されている。また,数値解析が実務レベルで利用される機会が増えており,数値解析を用いた信頼性設計の枠組みが必要と考えられる。個別要素法は,利用が拡大している手法の一つであり,落石などの問題に対する有効なツールとして認知され始めている。落石や斜面の形状を直接表現することが可能なため,質点系の手法に比べて実現象に近い挙動が再現できる。しかし,その一方で,高い計算コストやパラメータの決定の難しさは大きな課題であり,落石や斜面の形状を詳細に表現するほど,計算結果はパラメータの値に敏感に反応して解に大きなバラツキが生じる。本研究では,個別要素法の問題点を解消すると同時に,落石対策工の信頼性設計を可能とする枠組みを提案する。例として,仮想斜面の落石の運動を想定して,落石エネルギー評価について一連の流れを示し,提案手法の有効性や利点について説明する。

キーワード: 落石, 信頼性解析, 個別要素法

1. はじめに

現在,世界中の様々な設計コードが,従来の許容応力度 設計法から信頼性設計法の考え方に移行している段階で あり,土木構造物の設計についても,信頼性設計法に基づ いた設計法が主流になってくると考えられる。また,近年 の数値解析技術と計算機能力の向上により,数値解析が実 務的なレベルで構造物の設計に用いられるようになって きた。そのため,今後の土木構造物の設計については,数 値解析を用いた信頼性設計の枠組みが必要となる。

個別要素法(DEM)¹⁾も,近年その利用が拡大している 数値解析手法の1つであり,落石などの個体の衝突が支配 的な問題に対する有効なツールとして認知され始めてい る。しかしながら,解析パラメータの設定の難しさは未だ 大きな課題であり,DEM を落石などのような問題に適用 した場合には,斜面形状や落石の複雑な形状を表現できる 一方で,解析結果は初期条件や入力パラメータに大きく依 存する。そのため,落石挙動の傾向を正確に把握するため には数多くの解析ケースを実施する必要があるが,要素数 の多い場合には膨大な計算時間が必要となり,十分な数の 解析ケースを実施することが難しい。特に,3次元解析な どでは,この傾向が強くなる。このような解析パラメータ の不確実性や解析結果の取り扱いの難しさは,実務レベル の設計では大きなネックとなり,DEM の使用に対する障 害になっていると考えられる。

本研究では、先述の DEM に関する問題点を解消すると ともに、DEM を落石対策工の信頼性設計に用いるための 枠組みを提案する。本稿では、まず、その枠組みの概略を 示し、その後、仮想斜面を対象とした落石について、落石 エネルギーを評価対象として設計の手順を示す。また、本 研究で得られる結果と従来の評価方法による結果を比較 し、その結果について議論する。

2. 提案する信頼性設計の枠組み

2.1 基本となる設計の枠組み

地盤構造物の実務的なレベルⅢの信頼性設計の枠組み として、図1に示す枠組みを提案されている²⁾³⁾。本研究 では、この考え方に基づいて、DEM を用いた落石対策工 の信頼性設計の枠組みを提案する。図1に示す方法では、 設計の作業工程を①数値解析、②不確実性解析、③信頼性 解析の3つのプロセスに分離する。①の数値解析は、数値 解析ツールを用いて、対象事象の応答を調べるプロセスで ある。このプロセスでは、対象事象に対して支配的な基本 変数xの値の組み合わせを変化させ、それぞれの組み合わ せに対する対象事象の応答を出力しておく。②不確実性解 析は、基本変数xの不確実性を統計的学的手法により定量 化するプロセスである。このプロセスでは、基本変数 x に 対する経験的な知見や、これまでに蓄積されているデータ ベースの情報から、基本変数 x の統計量(平均や分散)を 評価する。③の信頼性解析では、①で得られた数値解析 の結果を用いて基本変数 x に対する対象事象 y の応答局 面を仮定する。その後、得られた応答局面と②で定量化さ れた不確実性の情報を用いて、モンテカルロシミュレーシ ョンを実施する。その結果からある定められた状態に対す る超過確率を算出し、信頼性の評価を行う。

上記の枠組みでは、数値解析のプロセスとその他のプロ セスが独立しているため、数値解析手法の高度化や変化に 即座に対応することができ、数値解析手法の発展に伴って 新しい解析手法を随時採りこむことが可能である。

図 1 数値解析を用いた信頼性設計の枠組み²⁾³⁾

2.2 DEM を用いた設計の流れと考慮すべき不確実性

以下では、DEM を用いた信頼性設計の流れを示すとと もに、その中で考慮すべき不確実性について説明する。図 2は、先述の信頼性設計の枠組みに基づいて、DEM を利 用した場合の設計の流れを示したものである。特に設計対 象が落石対策工であると仮定して説明を進めるものとす る。

まず,従来の設計と同じく,現地調査により不安定岩塊 の位置, サイズ, 岩種, および斜面の形状や表面の状態な どを把握する。この結果をもとに、DEM の解析モデルや 解析パラメータの値や範囲を決定するが、この際に、「計 測誤差」、「空間的ばらつき」、「統計的推定誤差」という3 種類の不確実性が含まれる。「計測誤差」は、調査対象(地 盤や斜面など)の調査や試験に含まれる誤差であり、使用 機器や計測者の個人差なども含まれる可能性がある。「空 間的ばらつき」とは、調査対象の空間的な不均一性であり、 例えば、斜面や岩体の強度が空間的に均一ではないことを 意味する。また、「統計的推定誤差」は、特に限られた調 査結果から解析対象の局所的な特性を推定する際に発生 する誤差である。また、調査結果から DEM の解析パラメ ータを決定する際には、「変換誤差」が発生する。調査や 試験の結果をそのまま解析パラメータとして用いること が可能な場合は少なく,多くの場合,調査や試験の結果を 解析パラメータに変換する作業が必要となる。個別要素法 では、岩種や試験結果から粒子間モデルのパラメータを決 定することになるが、この際に変換誤差が生じる。最後に、 設計モデル誤差があり、これは、設計計算に採用されたモ

デルが現実の現象を再現する精度にかかわる誤差である。 この誤差には、DEM のモデル誤差と、DEM の計算結果 から構築される応答局面のモデル誤差が含まれる。応答局 面のモデル誤差は、DEM の計算結果のバラツキからある 程度仮定できるのに対して、DEM のモデル誤差は、DEM という手法で現象を再現した場合に、実現象との乖離がど の程度あるかということを意味するものであり、容易に定 量化できるものではない。しかし、このDEM のモデル誤 差を適切に評価して基本変数として導入することにより、 数値解析の結果と現実との整合性という実務者を悩ませ る大きな問題を解消することが出来るため、極めて重要な 不確実性であると考えられる。

上記の不確実性は、不確実性解析の中で、工学的知見、 過去の研究成果、各種情報のデータベースを用いて定量化 され、モンテカルロシミュレーションの入力値の情報とし て用いられる。図2をみてわかるように、DEMによる解 析を実施する目的は、応答局面を仮定するための材料を提 供するという目的に限定されることになるため、全ての想 定ケースを計算する必要はない。各種パラメータや解析条 件を変化させた場合に、対象としている応答がどのように 変化するかの傾向が把握できればよい。そのため、数多く の想定ケースを解析する必要はない。DEMの計算結果に 基づいて、応答局面が仮定され、基本変数の不確実性に基 づいてモンテカルロシミュレーションが実施されること になるため、結果的に何千ケースといった膨大な量の計算 の実施が可能となる。

このような枠組みで設計を進める利点として, DEM の 問題点の解消が挙げられる。冒頭に述べたように, DEM の利用の障害となっている問題として, 計算コスト, 解析 パラメータの決定の難しさ, 計算結果のバラツキなどがあ る。提案する枠組みの中では, DEM の計算は応答関数の 獲得という目的に限定して実施されるために, 多くの計算 ケースは必要なく, 計算コストを削減できる。また, 解析 パラメータについても, 不確実性を考慮した確率場として 表現されることになるため設定しやすい。さらに, 解のバ ラツキを利用して信頼性評価が行われるため, DEM の計 算結果がばらついたとしても, その結果そのものに基づい て信頼性評価を行うことができる。このように, 提案する 枠組みは, DEM の計算結果を信頼性設計の中で利用でき る環境を提供するだけでなく, 実務レベルで DEM を利用 する際の問題点を解消できる可能性がある。

次節以降では、仮想斜面の落石防護工を設計対象として、 具体的な設計の流れを説明する。2次元 DEM 解析を実施 し、応答として、異なるパラメータの組に対する落石エネ ルギーの変化を調べる。その後、応答関数を仮定するとと もに、不確実性の定量化を行い、モンテカルロシミュレー ションによって信頼性評価を行う。なお、提案する枠組み の中では、先述の不確実性を定量化する考え方や手段が重 要となるが、これらについては未だ完全に確立されていな い部分もあるために、詳細な議論は避け、本稿では DEM を用いた信頼性設計の枠組み説明するものとする。

図 2 DEM を用いた設計の流れ

3. 個別要素法による落石シミュレーション

以下では、仮想斜面の落石防護工を対象として、先述の DEM を用いた信頼性設計の枠組みを適用する。本研究で は、落石シミュレーションに対して、2次元 DEM を適用 し、対象とする応答を防護工の設計に重要となる落石エネ ルギーとした。図3が用いた解析モデルの概略図である。 DEM では、図4に示すように、球要素の間に粒子間力モ デルを設定し、粒子同士の衝突により発生する力を計算し、 粒子1つ1つの運動方程式を解く。近年では、粒子要素を 剛結して、複雑形状を表現する方法が広く用いられており、 本研究においても、粒子を剛結することで落石と斜面の形 状を表現している。

本来であれば,解析モデルは現地調査に基づいて作成されるが,本研究においては,落石(岩塊)の規模や斜面形状は仮想のものとした。落石の質量は400kgであり,斜面形状と落石の初期位置は図3に示すとおりである。計算開始と同時に,斜面上部の岩体が重力により斜面上を落下する。このとき,各解析ケースの落石エネルギーを算出する。図3には待ち受け防護壁の位置が示されているが,解析の中では存在しない。図3に示した待ち受け防護壁に衝突すると想定して,防護壁表面の位置を通り過ぎるときのエネルギーを評価する。このとき,落石エネルギーは並進速度と回転速度から算出する。

DEM の粒子間力モデルは,法線方向にバネとダッシュ ポット,接戦方向にバネとダッシュポットとスライダーを 有する。それぞれに対して係数を決定する必要があるが,

これらのパラメータの決定に支配的な物理量は、反発係数 と摩擦係数である。そのため、これらを基本変数として設 定する。解析で用いる反発係数と摩擦係数については、一 般的な値を考慮して決定した。また, DEM では, 落石の 形状を表現することが可能であるが、ここでは落石の形状 が不明確であるという条件を設定し, 落石の形状も1つの 不確実性として導入し, 落石のアスペクト比を基本変数と して考慮した。ただし、初期の落石の位置エネルギーを一 定とするために、図5に示すように体積が一定になるよう に落石の形状を変化させている。以上より, 反発係数, 摩 擦係数, 落石のアスペクト比を基本変数として解析を行っ た。それぞれの基本変数の値は、表1に示すように、反発 係数が 0.4~0.6 の間で 3 種類, 摩擦角が 20~40 度の間で 5 種類、アスペクト比が 1.083~1.940 の間で 3 種類とし た. これらの組み合わせにより, 合計 45 ケースについて DEM 解析を実施した。図 6~8 は、計算結果に基づいて、 各アスペクト比について摩擦角と反発係数と落石エネル ギーの関係をプロットしたものである。これらの結果より, 摩擦角が大きくなるほどエネルギーは減少傾向にあるが, 反発係数については解のばらつきが大きく, 落石エネルギ ーに与える影響については明瞭な関係が確認されない。ま た,アスペクト比が大きくなるにつれて,摩擦角が高い領 域では落石エネルギーが著しく低下することが確認でき る。これは、アスペクト比が高い場合は、斜面上を滑動す るような運動形態が多くなり、その場合に摩擦係数が大き いと落下速度が小さくなるためである。

図 3 解析モデルの概略図

図 5 仮想岩塊のアスペクト比

表1 解析で用いた各基本変数の値

基本変数	基本変数の値						
摩擦角(度)	20.0	25.0	30.0	35.0	40.0		
アスペクト比	1.18	1.51	1.94				
反発係数	0.4	0.5	0.6				

図 7 アスペクト比 1.51 の結果

図 8 アスペクト比 1.94 の結果

4. 応答局面の仮定

先述の DEM の計算結果より,反発係数については解の バラツキ大きく,エネルギーと反発係数の明確な関係は得 られなかった。そのため,応答関数は,摩擦角とアスペク ト比を変数とする関数で仮定した。表2に想定した関数と, それぞれの関数を用いた場合の標準偏差と残差,および AIC⁴⁾の値を示す。これらの結果より,表2の No.6の関数 を応答関数として採用し,以下の応答関数が得られた。

$E = 18920Asp - 6419\log(F)Asp + 10839$ (1)

ここで, E は落石エネルギー, Asp はアスペクト比, F は 摩擦角(degree)である。図 9 は応答関数をアスペクト比, 摩擦角,落石エネルギーの3つの軸で構成される空間内で 表現したものである。このように,応答関数としてどのよ うな関数を用いるかは任意であり,工学的判断を加味して, DEM の計算結果を精度よく表現できる応答関数を仮定す る必要がある。

ここで、式(1)の応答関数にモデル誤差の影響を導入 する。先述のように、反発係数については落石エネルギ ーと明瞭な関係が確認されなかったために、応答関数の 基本変数から排除しているが、反発係数が変化すること で解にばらつきが生じており、このばらつきは応答関数 のモデル誤差として評価されるべきである。また、DEM を利用して設計を行っているために、DEM のモデル誤差 についても考慮すべきである。本研究では、応答関数の モデル誤差 δ_{DEM} と応答関数のモデル誤差 δ_{RS} を導入し て、最終的に応答関数を以下のように仮定した。

 $E = (18920Asp - 6419\log(F)Asp + 10839)\delta_{DEM}\delta_{RS} (2)$

表2 応答関数の候補と評価結果

No.	関数	標準偏差	分散	AIC
1	$E = a \cdot Asp + b \cdot F + c$	3854	0.316	873.7
2	$E = a \cdot Asp^2 + b \cdot F^2 + c$	3854	0.316	873.7
3	$E = a \cdot Asp + b \cdot F + c \cdot Asp \cdot F + d$	3891	0.319	873.5
4	$E = a \cdot Asp + b \cdot \log(F) + c$	3798	0.336	872.4
5	$E = a \cdot Asp + b \cdot \log(F) + c \cdot \log(F) \cdot Asp + c$	7 3832	0.440	872.1
6	$E = a \cdot Asp + b \cdot Asp \cdot \log(F) + c$	3792	0.338	872.2
×				

図 9 応答関数

5. 基本変数の不確実性解析

先述のように、応答関数に含まれる基本変数を摩擦係数, 落石のアスペクト比、DEMのモデルのモデル誤差,応答 関数のモデル誤差の4種類とした。不確実性解析のプロセ スでは、これらの変数の確率モデルを推定する。摩擦角や アスペクト比については、現地調査結果や試験結果、また は過去の研究成果やデータベース基づいて決定されるも のであるが、本研究では仮想の落石斜面を対象としている ため、考えられる範囲に対して仮定の確率モデルを与えた。 これらの平均値や分散、および分布関数を仮定することに より、不確実性を定量化する。また、応答関数のモデル誤 差については、先述のDEMの計算結果のばらつきに基づ いて正規分布に従うものとして定量化した。DEMのモデ ル誤差については、今後の研究で定量化を行うものとして、 本研究においては仮想のものを設定した。

基本変数		平均	標準偏差	分布関数
摩擦角(度)	F	30	7	正規分布
アスペクト比	A	1.5	0.5	正規分布
応答関数のモデル誤差	$\delta_{_{RS}}$	1.0	0.55	正規分布
DEMのモデル誤差	$\delta_{\rm DEM}$	1.0	0.2	正規分布

表2 基本変数の確率モデル

6. 信頼性解析

数値解析結果に基づく応答局面と,不確実性解析により 定量化された基本変数の不確実性を用いて,モンテカルロ シミュレーションを行った。本来であれば,この結果から 得られる落石エネルギーの分布と,対策工の許容エネルギ

一の値から,超過確率を評価することになるが,本研究で は、防護工の許容エネルギーを確定的に設定するのではな く、各落石エネルギーの値に対する超過確率を算出した。 図 10 にその結果を示す。このような結果の整理を行うこ とにより,実際の落石のエネルギーが,ある規定されたエ ネルギーを超える確率を得ることができ,対策工の選定な どに有益な情報を与える。また、図10には2種類の結果 (「45 ケース」と「200 ケース」)が示されている。先述の ように, DEM の計算は 45 ケース行っており, その結果に 基づいて応答関数を仮定しているが,45 ケースの DEM 計 算結果に基づく結果が妥当であるかどうかを確認するた めに, 200 ケースの DEM の計算結果に基づく評価結果も 示した。この200ケースの計算は、表1のアスペクト比を 8種類に、反発係数を5種類に増やして実施したものであ る。図より確認できるように、「45 ケース」と「200 ケー ス」の結果はほぼ一致しており、45 ケースの結果でも十 分な精度であることがわかる。このように、少ない解析ケ ースでも応答の傾向を精度よく把握できればよく、DEM の解析パラメータを細かく設定して多くの解析ケースを 実施する必要はない。ただし、解析ケースの絞り込みには、 当然ながら工学的判断が必要であり、また、DEM という 手法の特性を正しく理解しておく必要がある。

図 10 落石エネルギーに対する超過確率の関係

ここで、本研究で得られた結果について、現行の設計法 との比較を行う。比較のために、用いたのは、落石対策便 覧⁵⁾の落石エネルギー評価式であり、以下の式で表現され る。

$$E = (1 + \beta) \left(1 - \frac{\mu}{\tan \theta} \right) mgH$$
(3)

ここで、 β は回転運動の効果を加味した係数(ここでは β =0.1とした)、 μ は等価摩擦係数、 θ は斜面勾配、mは落石の質量、gは重力加速度、Hは落下高さである。 この式を応答関数として仮定し、モンテカルロシミュレー ションを実施した。 μ 以外のパラメータについては解析 条件などから確定値とし、 μ については落石対策便覧に 記載されている値を参考にして確率モデルを推定してい る。本研究の DEM による落石エネルギーと、落石対策便 覧の評価式による結果の比較を図 11 に示す。図 11 は、そ れぞれの計算によって得られた落石エネルギーの頻度分 布図である。これを見てわかるように、DEM による結果 は, 落石対策便覧の評価式による結果に比べて全体的に低 い値を示している。落石対策便覧では、多くの実験結果を 基にして,設計に対してかなり安全側のエネルギーの値が 出力されるようにパラメータを設定することになってい るため, 当然ながら DEM による結果に比べて大きいエネ ルギーが算出される。このように、1つの評価式で様々な 条件の落石エネルギーを評価しようとする場合, どうして も安全側の評価が必要となる。しかし、本研究で示した枠 組みでは, 落石危険個所の地質や地形, および落石の形状 などを考慮してDEMによる落石シミュレーションを実施 し、その個所特有の落石エネルギーの応答関数を構築する ことが可能であるため、過度に安全側の設計になることを 防ぐことができる。本稿で示した計算では、DEM のモデ ル誤差などを精度よく評価して導入するには至っておら ず,出力された結果も大きな分散を含んだものであるが, それでも従来の設計法と比べて合理的な設計ができる可 能性を確認することができる。

図 10 落石エネルギーの頻度分布図

7. まとめ

本稿では, DEM を用いた落石対策工の信頼性設計の枠 組みを提案した。また,シンプルな条件で仮想斜面におけ る落石を想定して,具体的な設計の流れを示した。本研究 で得られた結論を以下にまとめる。

- ・提案した枠組みは, DEM を用いた信頼性設計の環境を 提供するだけでなく,実務上で DEM の利用の障害とな る問題点についても解消できる可能性がある。
- DEM の計算結果に基づいて、ある状態に対する危険度 を超過確率で表現することが可能であるため、設計に対 して定量的な情報を提供することができる。
- ・従来の統一的な評価方法と比較して、個所特有の評価が可能となり、対象とする個所によっては、設計における 過大評価を大幅に解消できる可能性がある。

本研究では、実斜面ではなく、仮想斜面を対象として DEM 解析を実施しており、また、DEM のモデル誤差につ いて詳細な議論を行っていないため、現段階では提案した 枠組みの可能性について論じる程度にとどまっている。今 後、各種の不確実性の定量化の考え方や算出方法を明確化 するとともに、実斜面での落石を対象とした検証を実施し ていく予定である。

参考文献

- Cundall P. A. and Strack O. D. L (1979): A discreat numerical model for granular material, Geotechnique, 29, 47-65.
- Honjo Y., Hara T. & Kieu Le T.C.(2010): Level III Reliability Based Design of Examples set by ETC10, Proceedings of 2nd International Workshop on Evaluation of Eurocode 7.
- Yusuke Honjo, Challenges in Geotechnical Reliability Based Design, proceedings of 3rd International Symposium on Geotechnical Safety and Risk, pp.11-27, 2011
- Akaike, H. (1973) : Information theory and an extention of the maximum likelihood principle, 2nd International Symposium on Information Theory, Petrov, B. N., and Csaki, F. (eds.), Akadimiai Kiado, Budapest, 267-281.
- 社団法人日本道路協会,落石対策便覧,丸善,2000年(改訂版)

山留め掘削における合理的なグラウンドアンカーの支保パターンの探索 ~模型実験と数値解析による検討~

Investigation of rational support patterns in ground anchors for braced excavation \sim model tests and numerical analyses \sim

奥田一彰¹,加藤盛大²,菊本統³,中井照夫⁴,ホサインシャヒン⁵

1 名古屋工業大学大学院 創成シミュレーション工学専攻 博士前期課程1年

2 名古屋工業大学大学院 社会工学専攻 博士前期課程2年

3 名古屋工業大学 都市社会工学科 助教 (E-mail: kikumoto@nitech.ac.jp)

4 名古屋工業大学 都市社会工学科 教授

5 名古屋工業大学 都市社会工学科 准教授

概 要

グラウンドアンカー式山留め掘削は、切梁工法と比べて任意の断面での掘削が可能であるためしばしば用 いられているが、経験的あるいは切梁工法に倣った設計が行われているのが現状で、必ずしも合理化され ているとはいえない。そこで本研究では、アンカーの長さや本数、角度、初期緊張力および山留め壁の根 入れ長を変化させた 2 次元模型実験を実施した。また、同実験に対して地盤材料の弾塑性構成モデル subloading t_{ij} model³⁾に基づく有限要素解析(FEMtij-2D)を実施し、実験との比較により解析の妥当性を検証す るとともに、グラウンドアンカー式山留めの支保機構を明らかにした。その結果、明確な支保効果を得る ためには十分な長さのアンカーに初期緊張力を与えて設置することが重要で、特に最下段に長いアンカー を設置することが効果的であるとわかった。また、土の力学特性を適切にモデル化した数値解析は実測値 を概ね捉えたことから、今後は実地盤での数値解析によるアプローチが可能となった。

キーワード:山留め掘削,グラウンドアンカー,模型実験,数値解析

1. はじめに

地中に反力を得るグラウンドアンカー式山留め掘削工 法は、切梁工法と比べ広く深い断面での掘削が可能であり、 任意の断面に設定できることからしばしば用いられてい る。しかし現行の設計法では、山留め壁に作用する土圧の 設定と山留めの応力・変形作用を経験的手法や切梁工法に 倣った手法で評価している。加えて、山留め壁の背面側へ の変位や壁体の作用土圧を評価する方法は必ずしも確立 されておらず、グラウンドアンカー式山留め掘削の設計法 は必ずしも合理化されていない¹⁾。今後、都市部で既設構 造物に近接した施工など制約のある条件のもとでの設 計・施工が求められると予想されるため、合理的なアンカ ー式山留めの設計・施工法の確立は急務である。

そこで本研究では、設計・施工の合理化を目指して、そ の影響要因であるアンカーの長さや本数、傾角、初期緊張 力及び山留め壁の根入れ長をパラメトリックに変化させ た2次元模型実験を実施し、効果的な支保効果が得られる アンカーの適用方法と支保メカニズムの解明を目指した。 また、同実験に対して地盤材料の弾塑性構成モデル subloading t_{ij} model に基づく有限要素解析を実施し、両者の 比較により解析法の有効性を検討する。これにより、本研 究で用いた数値解析手法がアンカー式山留め掘削におけ る実地盤の変形・破壊挙動の予測への適用可能かどうかに ついても検討する。

2. 2次元模型実験と数値解析の概要

2.1 2次元模型実験の概要

2 次元模型実験の概略図を図 1 に示す。模型は大略現場 スケールの約 1/100 を想定しており,地盤材料には直径 1.6mm と 3.0mm のアルミ棒を重量比 3:2 で混合した積層体 (単位体積重量 γ =20.4kN/m³)を用いた。山留め壁(長さ 300mm または 360mm,奥行き 60mm,厚さ 0.5mm, EI=0.88N*m²/cm, EA=4.22*10²kN/cm)とアンカー体(奥行 き 50mm,横幅 50mm,厚さ 5mm)はアルミ板で作成した。 また,アンカー体は周面に 10mm 間隔で 1.6mm 径のアル

表1 実験パターン(アンカー長・本数・根入れ長の比較)

	本数	初期緊張 力 T (N)	アンカー長 L (mm)	根入 れ長 (mm)	傾角 θ(°)
Case2-A			L ₁ =150, L ₂ =125		
Case2-B	2		L ₁ =300, L ₂ =125		
Case2-C	2		L ₁ =150, L ₂ =250		
Case2-D		T0.31	L ₁ =300, L ₂ =250		
Case3-A		11 0.51	L ₁ =150, L ₂ =125,	300	
		T ₂ =0.57	L ₃ =100		30
Case3-B	2	T0.84	$L_1=300, L_2=125, L_3=100$		
Case3-C	3	13-0.84	L ₁ =150, L ₂ =125, L ₃ =300		
Case3-D			$L_1=150, L_2=125,$ $L_2=100$	360	

ミ棒を貼り付け、地盤との摩擦を表現した。アンカーの緊 張力は頭部の蝶ナットにより制御可能で,水平面からのア ンカーの傾角 θ を任意に設定できる。アンカー引張部は, アンカー体と頭部をモデル地盤の両側面からピアノ線(径 0.3mm, EA=1.41*10³kN/cm) で接続してモデル化した。ピ アノ線には2軸のひずみゲージを接着したアルミ薄板(長 さ 30mm, 幅 60mm, 厚さ 0.2mm) を挿入し, 較正係数を 乗じて引張力を算出した。掘削過程は地表面からアルミ棒 を15mm ずつ取り除くことで模擬し、地盤の崩壊により実 験の続行が不可能となる掘削深度まで行った。山留め壁の 変位と偏差ひずみ分布は30mm掘削毎に地盤側面から撮影 したデジタル画像より求め, 地表面の沈下形状はレーザー 変位計と超音波変位計より計測した。今回行なった実験パ ターンを表1に示す。アンカーは2段または3段設置し、 1,2,3 段目のアンカーはそれぞれ掘削深度が 30mm, 90mm, 150mm 到達時に地表面から深さ 15mm, 75mm, 135mmの 位置に設置した。最終掘削深度を 210mm, 内部摩擦角を 30°と設定して主働すべり面を仮定し、アンカー体を主働

図3 アルミ棒積層体の二軸試験と数値解析

すべり面と考えられる領域の外側に設置した。表1に示し た実験パターンにおいては、Case2-A と Case3-A を基本ケ ースとして、アンカー長(L)と根入れ長を変化させた実験を 行った。アンカーに導入する初期緊張力(T)はアンカーを設 置する掘削深度までの壁体に作用する主働土圧から算出 した。

2.2 数値解析の概要

地盤の非線形有限要素解析コード FEMtij-2D を用いて平 面ひずみ・排水条件下で微小変形理論に基づく解析を実施 した。図2に解析メッシュを示す。山留め壁とアンカー体 は beam 要素, アンカーは引張のみに抵抗する truss 要素で 表現し、これらの剛性は模型実験と同様の値を用いている。 地盤と山留め壁との間の摩擦を考慮するために弾塑性 joint 要素²⁾を用い, 摩擦角 δ=14°(別途, 摩擦試験により 決定)とした。掘削は要素を除去することでモデル試験と同 様に模擬した。境界条件はモデル試験と同一で、底面は完 全固定,側面は水平変位のみ固定とした。地盤材料の応力 -ひずみ関係は、等方硬化型の弾塑性モデル subloading t_{ii} model³⁾で記述した。このモデルは中間主応力が強度・変 形特性に及ぼす影響やひずみ増分方向の応力経路依存性, 密度と拘束圧の影響を適切に考慮できる。図3はアルミ棒 積層体の二軸試験と解析結果の比較の一例である。図より, アルミ棒積層体が密詰めの砂に近い変形・強度特性を示す ことがわかる。また図中の実線は、実測値に対応する解析 曲線を示しており, subloading tii model は実測値に見られる ような中密な砂に似たひずみ硬化・軟化特性や正負のダイ レイタンシーをよく捉えている。なお、図中の破線は模型

地盤で想定される約 1/100 の応力レベルでの二軸試験の解 析値であるが、同モデルは拘束圧による応力ひずみ特性の 違いを適切に説明している。表2 にアルミ棒積層体のパラ メータを示す(α は密度と拘束圧の影響,β は降伏面の形 状に関するパラメータであり、残りは Cam-clay モデルと 共通である。これらは一般的な土の要素試験によって簡単 に求めることができる)。これらは、材料が決まれば一意 的に決まるものであり、密度・拘束応力によらない。初期 の応力状態は、模型実験と同じ間隙比になるように拘束圧 *p*=9.8×10⁻⁶kPa での間隙比 *e*=0.36 と仮定して、地盤を自重 圧密させる。掘削は当該箇所の要素を取り除くことで表現 している。実験結果との比較により解析結果の妥当性を検 証するとともに、アンカーの傾角及び初期緊張力の違いに よる支保機構への影響を数値解析の実施により検討した。

表2 アルミ棒積層体のパラメータ

2.3 アンカー体の引抜実験とその解析

模型地盤中に設置したアンカー体の鉛直引抜き試験を 行い,引抜耐力を調べた。同条件で解析も実施したが,ア ンカー体を beam 要素で表現し,その最上段の接点に鉛直 上向きの強制変位を与えた。アンカー体の土被りは,D=15, 30cm の場合について行った。得られた引抜き荷重と鉛直 変位の関係を図4に示す。プロットは実測値,実線は解析 値を示している。図より,アンカー引抜き力は鉛直変位に 伴って増加してやがて極限値に達し,漸減する傾向を示す。 また,極限引抜き力は土被りが深いほど大きい。数値解析 は,初期勾配を小さめに評価する傾向にあるが,極限引抜 き力の極限値や土被りによる差異など模型実験の傾向を 概ね評価しており,数値解析におけるアンカー体のモデル 化は妥当と考える。

3. 結果と考察

3.1 アンカー長および本数を変化させた場合の支保機 構に関する検討

アンカーを2段設置した Case2-A,C について、図5 に壁体の変位分布を、図6 に地表面の沈下形状を示す。図より、 アンカー長によらず2段式のアンカーは掘削深度 d=150mmまで壁体の変位や地表面沈下を明確に抑制する ものの、その後更に掘削(d≥180mm)を進めると山留め 壁が深さ150mm辺りからはらみ出すように変形し、地表 面沈下量も増加することがわかる。掘削深度 d=180mm 以 深では、アンカー長による差異が顕著であり、2段目のア ンカー長を2倍にした Case2-C では Case2-A に比べて壁体 変位量が抑制されるとともに、地表面沈下を生じる範囲が 明確に狭まり、より深い掘削が可能になった。

図 7 には、壁体変位が顕著に現れた掘削深度 d=150mm 以深について、各ケースの壁体の最大変位量を比較してい る。図から、先述のように 2 段目に長いアンカーを適用 (Case2-C)することで、両アンカー長が長い Case2-D と同等 の支保効果が得られ、壁体の変位が抑制されることがわか る。一方で、1 段目のアンカーのみを長く設定した Case2-B は、2 段ともにアンカー長の短い Case2-A と同様に、掘削 深度 d=180mm 以深での変位量が増加し、崩壊深度が浅い ことがわかる。図 8 には、各ケースでの掘削に伴う張力の 推移を示している。いずれのケースにおいても1 段目アン

図9 2段設置時での偏差ひずみ分布

カーにおける張力の変化量は小さいのに対して、2段目ア ンカーの張力は掘削の進行に伴って増加する。特に、山留 め壁の変形や地表面沈下量が増大する掘削深度 d=150mm 以深では2段目アンカーの張力の増加が顕著で、地盤崩壊 時(最終掘削深度)に最大値となる。また、2段目のアン カーが長い Case2-C,D では,2 段目アンカーの張力の最大 値が Case2-A の 1.5 倍程度に達することがわかる。図9に は、偏差ひずみ分布を示している。アンカーが短い Case2-A ではアンカー体を含む土塊の外側にせん断帯が発達する のに対して,長いアンカーを用いた Case2-D ではアンカー 体がせん断帯をまたいでおり, 偏差ひずみの発達が明確に 抑制されている。また,2段目のアンカー長が長い Case2-C では、Case2-D と同様の偏差ひずみ分布を示しており、2 段目のアンカーのアンカー体が滑り面の外側にある。これ により、2段目のアンカーが十分な引抜抵抗を発揮したた め、2段目のアンカーの張力が増加し、明確な支保効果が 得られたと考えられる。一方で、1段目のアンカーが長い Case2-B では、1 段目のアンカー体が滑り面の外側である

が、偏差ひずみの分布は Case2-A と同様であることがわか る。このことから、下方のアンカー長を十分に長く設定す ることが山留め壁の変位抑制に効果的といえる。

アンカーを3段設置した Case3-A,C について,図10に 壁体の変位分布を,図11に地表面の沈下形状を示す。両 ケースともに掘削深度 d=150mm までは壁体の変位が抑制 される。それ以深の掘削において、Case3-A については掘 削深度 d=210mm で変位が増大するが, Case3-C では明確に 変位が抑制され、より深い深度まで掘削が可能になること がわかる。地表面の沈下量も壁体の変位と同様に掘削深度 d=150mm まで地表面の沈下量は抑制される。その後, 更 に掘削を進めると Case3-A ではより広範囲にわたって沈下 量が増加するのに対して、Case3-C では明確に沈下量が抑 制され、沈下の範囲も狭くなることがわかる。また先述の 2 段式アンカーと比較して, 掘削深度 d=180mm における 壁体の変位量と地表面の沈下量が抑制されていることが わかる。また2段式アンカーでは、特に2段目のアンカー 長を長くすることでより深い掘削が可能となったが, Case3-A のように短いアンカーでも適切な掘削深度で3段 目のアンカーを設置することで,壁体の変位と地表面沈下 を明確に抑制する効果があるとわかる。

図 12 には、Case3-A,C についての張力の推移を示している。両ケースともに 2 段式アンカーと同様に 1 段目のアンカーにおける張力の変化量は小さいことがわかる。 2 段目アンカーの張力は掘削の進行に伴って増加するが、3 段目

図14 3段設置時での偏差ひずみ分布

アンカーの初期緊張力の導入とともに明確に減少し,その 後の掘削に伴って漸減する。3 段目のアンカーの張力は, 掘削の進行に伴う地盤の変形によって増加し,最終掘削深 度で最大値となる。Case3-C では,その最大値が Case3-A の2倍以上に達している。以上のことから,2段式アンカ ーと同様に,明確な支保効果を得るには最下段のアンカー 長が重要で,最下段に適切な長さのアンカーを設置して引 抜抵抗を発揮させることで,壁体の変位や地表面の沈下は 明確に抑制できるといえる。

図13には、壁体変位が顕著に現れた掘削深度 d=150mm 以深について、2段式アンカーでアンカー長が短い Case2-A と3段式アンカーのアンカー長を変化させた各ケースの壁 体の最大変位量についてまとめている。3段目に長いアン カーを適用した Case3-C では、壁体の変位を明確に抑制し、 最も深い掘削が可能となる。一方で、1段目のアンカー長 を長く設定した Case3-B は、全てのアンカー長が短い Case3-A とほぼ同じ推移を示しており、上段のアンカーを 長く設定することは、必ずしも明確な支保効果は得られないことがわかる。また、2段式アンカーの Case2-A において、掘削深度 d=150mm 以深で壁体の変位量が増加するのに対して、変位量が増加する掘削深度の直前(d=150mm)でアンカーを設置した Case3-A では、壁体の変位が抑制され、2段式アンカーと比べてより深い掘削が可能となることがわかる。

図 14 に、3 段式アンカーについての偏差ひずみ分布を示 す。Case3-A ではアンカー体の外側から掘削底面にわたる せん断帯が発生することで地盤が崩壊するのに対し、 Case3-C では 3 段目のアンカー体が滑り面の外側に設置さ れているため、十分なアンカーの引抜き抵抗が発揮された と考えられる。また Case3-C では、せん断帯が発生する領 域が狭くなっており、このことが地表面沈下の範囲を抑制 する要因と考えられる。一方、Case3-B では 1 段目のアン カー体が滑り面外側に設置されているが、Case3-A と比較 してせん断帯が発達する領域や偏差ひずみの量に明確な 差異は見られなかった。

これらのことから、山留め壁が深さ 150 mm あたりから はらみ出すようなモードで変位するのに対して、壁体の変 位が大きく生じる深度に設置する下方すなわち3段目のア ンカーを長く設置することが効果的であるといえる。つま り、壁体変位モードを勘案して、変位が大きくなる箇所に 十分な長さのアンカーを設置することが効果的な支保効 果を得るためには重要であり、適切な間隔と長さでアンカ ーを設置すれば壁体の変位や地表面の沈下を明確に抑制 できることがわかった。

施工事例⁴⁾⁵⁾によると,山留め掘削に伴う壁体の変位は, 地盤条件等によって異なるものの,一般的には2次掘削以 降において壁体頭部よりも掘削底面付近で最大となる。こ れは本実験と同様の結果であるため,実際の現場において も下段に適切な長さのアンカーを設置することが,より合 理的であると推察される。ただし,実地盤との対応に関し ては,今後,実構造物のスケールで地盤物性等を変化させ た詳細な数値解析により更なる検討を行う予定である。

3.2 根入れ長を変化させた場合の支保機構に関する検 討

短いアンカーを3段設置した Case3-A,D について,図15 に壁体の変位分布を,図16 に地表面の沈下形状を示す。 両ケースともに,掘削深度 d=180mm までは壁体の変位と 地表面の沈下量は抑制されており,根入れ長による差異は 見られない。しかし掘削深度 d=210mm では,壁体の変位 モードと地表面の沈下形状に違いは見られないものの,根 入れ長を長くした Case3-D での壁体の変位と地表面の沈下 量は抑制され,最終掘削深度も深くなることがわかる。図 17は, Case3-A,D における偏差ひずみの分布を示している。 最終掘削深度は異なるものの,両ケースともに,いずれの 偏差ひずみ分布も根入れ長の違いによる差異は見られな い。これは根入れ長によらずアンカー体の外側から掘削底

図 17 Case3-A,D での偏差ひずみ分布

面にわたるせん断帯が発達するため,アンカーの支保効果 に明確な差異はないものと考えられる。すなわち,根入れ 長を長くすることによりわずかに壁体の変位と地表面の 沈下が抑制されるが,より明確な支保効果を得るためには 根入れ長に加えて,先述のアンカーの長さや深さ方向の設 置間隔を合理的に設定することが重要といえる。

3.3 実験結果と解析結果の比較

図 18 および図 19 には, Case3-A と Case3-C について壁 体の変位分布と地表面の沈下形状の実験と解析結果を示 している。解析結果は, 掘削深度 *d*=150 から 210mm にお いて壁体の変位, 地表面の沈下とも定量的にやや大きめに 評価するものの, 3.1 節で述べた模型実験の山留め壁の変 形モードと地表面の沈下が生じる範囲を的確に捉えてい

ることがわかる。また、模型実験と同様に、数値解析でも 効果的な支保効果を得るためには、最下段のアンカーを長 く設置することが重要であるという結果を見出すことが できる。図 20 は、両ケースにおける偏差ひずみ分布の実 験と解析の結果を示している。解析結果は実測された偏差 ひずみ分布をよく表現しており、アンカー長が異なること による偏差ひずみの分布の違いを的確に捉えている。以上 のように、数値解析は掘削に伴う壁体の変位や地表面の沈 下をグラウンドアンカーの長さの影響も含めて実測値を よく表現できることがわかった。そこで次節からは、アン カーの傾角と初期緊張力が山留め支保効果に及ぼす影響 について、解析結果をもとに検討を行う。

3.4 傾角を変化させた場合の支保機構に関する検討

既往の研究⁰では,2 段式アンカーでアンカー長を長く 設定したケース(Case2-D)において,傾角を変化させた 検討を行っている。傾角 30°でアンカーを設置したケース では,掘削深度 d=180mm 以深で壁体の変位や地表面の沈 下量を僅かに抑制し,地表面沈下の影響範囲が抑えられる ことがわかっている。そこで本検討では,アンカーの明確 な支保効果が得られた Case3-C におけるアンカー長につい て,傾角 15°,30°,45°に設定した数値解析を行い,支 保効果に関する検討を行った。なお,各ケースの初期緊張 力は,山留め壁に与える初期水平力が傾角 30°の Case3-C と等しくなるように設定している。

図21に掘削深度 d=150mm 以深における壁体の最大変位 量を示す。掘削深度 d=180mm までは壁体の変位量に明確 な違いが見られないものの, d=210mm において傾角 45° でアンカーを設置した Case3-C(45)では,他の2 ケースと 比較して変位量が大きくなり,浅い掘削深度で崩壊するこ とがわかる。傾角を 15°に設定した Case3-C(15)は,傾角 30°の Case3-C(30)と同じ掘削深度で地盤が崩壊するもの の,最終掘削深度における最大変位量は僅かに抑制される ことがわかる。図 22 に偏差ひずみ分布を示す。いずれの ケースも偏差ひずみの量や,せん断帯の分布に明確な違い は見られないが, Case3-C(45)では他の2 ケースと比べて浅 い掘削深度で,偏差ひずみの量が大きくなる。

以上のことから、アンカー張力の水平成分が等しくなる ように初期のアンカー張力を与えても、アンカーの傾角を 小さく設定した方がより効果的に山留めの支保効果を得 ることができることがわかった。また本検討では、アンカ ーの初期緊張力の水平成分、すなわちアンカーから山留め 壁に作用する水平拘束力が等しくなる条件なので傾角 15°のケースが最もアンカーの初期緊張力が最も小さく なる。それにも関わらず、傾角 15°で最も高い支保効果が 得られることがわかった。これは、アンカー自身は軸方向 の変位に対してのみ剛性を発揮するためであり、水平に近 い傾角で設置されたアンカーが壁体の水平方向の変位を 抑制するのに最も有利であると言える。

3.5 初期緊張力を変化させた場合の支保機構に関する 検討

既往の研究⁶から,2段式アンカーでアンカー長を長く 設定した Case2-D において,2段目のアンカーの初期緊張 力を変化させた検討を行っている。初期緊張力を2倍とし

図 22 Case3-C における偏差ひずみ分布 (傾角の違い)

たケースでは、2段目アンカーの張力は、崩壊時に Case2-D とほぼ同等の値を示し、崩壊深度は同じとなる。また、壁体の変位や地表面の沈下は Case2-D と比較して僅かに抑制されるものの、両者に明確な違いは見られないことがわかっている。そこで本検討では、前節 3.4 と同様の Case3-C について 3 段目のアンカーに導入する初期緊張力を 2 倍としたケース(Case3-C')、初期緊張力を導入しないケース(No Tension)について数値解析を行い、支保効果に関する検討を行った。

図23に掘削深度 d=150mm 以深における壁体の最大変位 量を示す。d=150mm から地盤の崩壊する掘削深度 (d=240mm)に至るまで、初期緊張力の大きさに関わらず壁 体の最大変位量に明確な違いが見られないことがわかる。 図24 は各ケースの張力の推移を示している。初期緊張力 の導入量が小さいほど、アンカー設置後の張力の増加量が 大きくなる。しかし、各アンカーの張力の最大値と最終掘 削深度における値は、初期緊張力の大きさによらず、それ ぞれのアンカーにおける固有の値に収束することがわか る。すなわち、アンカーの長さと本数が定まれば、張力の 極限値と残留の張力は決まり、初期緊張力はそれほど支保 効果に違いを及ぼさないことがわかった。

一般的には,壁体の変位による大きな引張力が作用する ことでアンカー自体に変位が生じるため,それによる山留 め壁への過大な変形の防止を目的として初期緊張力を導 入している。本実験ではアンカーの剛性が高いため,アン カーが伸びることは考慮していない。そのため,異なる初 期緊張力を導入することにより背面地盤の側圧が変化す

図 24 Case3-C における張力の推移 (初期緊張力の違い)

ることが考えられる。しかし,実験や数値解析で得られた 結果から,今回行った実験条件の範囲内では,アンカーが 引張に対して即座に剛性を発揮できるよう設置されてい れば,初期緊張力の多寡は山留めの支保効果に必ずしも影 響しないことがわかった。

4. 結論

本研究では、グラウンドアンカーを用いた山留め掘削に おいて、アンカーの効果的な適用方法とその支保メカニズ ムについてアンカーの長さや本数、傾角、初期緊張力及び 山留め壁の根入れ長を変化させた2次元模型実験と数値解 析を実施した。その結果から得られた知見を以下に示す。 (1) 想定されるすべり面に対して十分な長さのアンカー を設置することで支保効果が得られ、特に下段のアンカー を長く設置することで効果的な支保効果が得られる。これ は、掘削に伴って山留め壁が大きくはらみ出す深度に設置 するアンカー長が山留め支保機構に対して特に重要であ ることを示しており、壁体の変位モードを勘案して変位が 大きくなる箇所に十分な長さのアンカーを設置すること で山留めの効果的な支保効果が得られる。

(2) アンカーの本数に関して、アンカーが短い場合でも適切な間隔でアンカーを設置することで、支保効果が得られることがわかった。ただし、壁体が大きくはらみ出す地表面からの深さ(本実験では150mm)におけるアンカーの引抜抵抗が重要であることから、その深さにおける設置間隔を小さくすることで、より高い支保効果が得られるものと

考えられる。

(3) 山留め壁の根入れ長が長いことは,必ずしも明確な支 保効果が得られるとはいえない。したがって,壁体の変位 モードを勘案してむしろアンカーの長さや設置間隔を適 切に組み合わせることがより重要である。

(4) 明確に支保効果が得られるアンカーの設置パターン において,水平に近い傾角でアンカーを設置することで山 留め壁や地盤の変形が抑制される。ただし,本検討では均 質な砂地盤を想定しており,実現場において地盤に対する アンカー体の引抜抵抗を勘案してアンカー長や傾角を設 定する必要があることに注意されたい。

(5) アンカーに導入する初期緊張力の大きさによって、山 留めの支保効果に明確な違いは見られない。ただし、本実 験ではアンカーをピアノ線でモデル化しており、その剛性 は非常に大きいため、アンカー自体の変位(伸び)は考慮 していない。

(6) 数値解析は実験の結果をよく模擬しており,地盤材料 の力学特性を適切にモデル化した数値解析が山留め,アン カーおよび周辺地盤の応答を予測する有用なツールにな ることが示された。

また著者らは、本稿と同様の手法の2次元模型実験と数 値解析を用いて、切梁式山留め掘削に関する周辺構造物と の相互作用や地盤の挙動についての検討を行っている⁷⁾。 切梁式山留め掘削においても、解析結果は実験をよく模擬 しており、本数値解析は種々の山留め掘削について地盤の 変形・破壊挙動を予測する有用なツールとなることが示さ れた。今後は、実地盤のスケールおける数値解析を実地盤 の物性を変化させ、実地盤に対応した数値解析を行なうこ とで、山留め掘削に伴う地盤の変形とグラウンドアンカー の相互作用メカニズムの解明と、本稿で得られたより効果 的なグラウンドアンカーの適用方法についての具体的な 検討を行う予定である。

参考文献

- 社団法人地盤工学会、グラウンドアンカーの調査・設計から 施工まで、pp.158-217, 1997
- 2) Nakai, T. S&F, 25(3), pp.98-112, 1985.
- 3) Nakai, T. & Hinokio, M., S&F, 44(2), pp.53-70, 2004.
- 佐々木俊平,住吉卓,廣島実,杉本孝雄,支保工形式が異なる土留め連壁の挙動比較,基礎工,36(2), pp.47-51,2008
- 5) 社団法人地盤工学会, グラウンドアンカー設計・施工例, pp.38-46, 2004
- 6) 加藤ら、グラウンドアンカーによる山留め支保メカニズムに 関する2次元モデル実験、中部地盤工学シンポジウム、 pp.129-134,2010
- 7) 上谷泰高,加藤盛大,中井照夫,H.M.Shahin,菊本統,張鋒, 山留め掘削が近接構造物に及ぼす影響,第45回地盤工学会 全国大会,2010.

固有振動解析による土構造物・地盤系の地震応答特性の把握

Comprehension of seismic response characteristics of soil structure - ground system by eigen vibration analysis

清水亮太¹,野田利弘¹,山田正太郎¹,浅岡顕²

1 名古屋大学大学院・工学研究科社会基盤工学専攻・shimizu@soil.civil.nagoya-u.ac.jp

2 地震予知総合研究振興会

概 要

本稿では、地盤の初期値・境界値問題に対して固有振動解析する方法について示すとともに、土構造物を 有する地盤の地震応答解析を水~土骨格連成有限変形解析コード*GEOASIA*によって行った。具体的には、 土構造物・地盤系の初期の固有振動数を算定した上で、系の各固有振動数と地震動の卓越周期に着目しな がら、系の地震応答の特徴について調べた。加えて、土構造物・地盤系の固有振動数の経時的変化に着目 して、土構造物の耐震性や土構造物と地盤の相互作用について考察した。なお、本稿の解析で対象にした ような有限変形の弾塑性問題では、幾何学的および材料的非線形性を有するため固有振動数は時々刻々変 化するが、それでも土構造物・地盤系の初期の固有振動数および固有モードが、その系の相互的な振動特 性を把握する上で重要であることを示した。

キーワード:土構造物・地盤系,地震応答解析,固有振動解析,相互作用,水〜土連成有限変形計算

1. はじめに

本稿では、地盤の初期値・境界値問題に対して、水~土 骨格連成式を考慮した固有振動解析手法について示すと ともに、土構造物を有する地盤の地震応答解析を水~土骨 格連成有限変形解析コード GEOASIA¹⁾によって行う。具体 的には、土構造物・地盤系の初期の固有振動数を算定した 上で、系の固有振動数に合わせた規則波を地盤に入射する ことによって、土構造物と地盤系の相互的な振動特性を把 握するとともに、有限変形の弾塑性問題においても初期の 固有振動数および固有モードが系全体の運動を把握する 上で重要であることを示す。

有限要素離散化された速度型運動方程式と水 ~土骨格連成式の固有値問題としての定式化

弾塑性体のような速度型構成式で表される物体の動的 境界値問題では、速度型運動方程式を解く必要がある。そ こで、速度型運動方程式を弱形式化し、土骨格の構成式と して有効応力を用いて記述された弾塑性構成式を適用す ると共に、有限要素離散化することによって、形式上、以 下のように表される連立常微分方程式が得られる²。

$$[\mathbf{M}]\langle \vec{v} \rangle + [\mathbf{K}]\langle v \rangle - [\mathbf{L}]^{\mathrm{r}} \langle \dot{u} \rangle = \langle \dot{f} \rangle$$
⁽¹⁾

ここに, [M] は質量マトリックス, [K] は接線剛性マトリック

ス, [L]は土骨格の速度を土骨格の体積変化に変換するマト リックス, {v}は節点の速度ベクトル, {u}は要素の間隙水圧 速度である。

地盤と基盤(地盤の下端)の境界に粘性境界を与えた場 合,解くべき連立常微分方程式は,減衰項を有する運動方 程式として次式のように表される。

$$[\mathbf{M}]\langle \ddot{\boldsymbol{v}} \rangle + [\mathbf{C}^*]\langle \dot{\boldsymbol{v}} \rangle + [\mathbf{K}]\langle \boldsymbol{v} \rangle - [\mathbf{L}]^T \langle \dot{\boldsymbol{u}} \rangle = \left\{ \dot{\boldsymbol{f}}^* \right\}$$
(2)

ここに、[C]は粘性境界を導入したことによって生じる減衰 マトリックスであり、非比例減衰である。

また,水〜土骨格連成式については,飽和土の連続式お よび平均的な間隙水の流速式に基づいて,各要素の中心に 間隙水圧 *u* を代表させる Chiristian 流³¹または田村流⁴¹の物 理モデルを拡張して用いると,形式上,以下のように表さ れる連立常微分方程式が得られる²¹。

$$[L']\{\dot{v}\} - [L]\{v\} + [H]\{u\} + [G]\{\dot{u}\} = \{\dot{f}_u\}$$
(3)

ここに, [L']は[L]を変形して作られるマトリックス, [H]は 透水係数マトリックス, [G]は間隙率と水の圧縮率で与えら れるマトリックスである。

さらに,有限要素法の速度場に線形制約条件が課せられ る場合を考慮すると,解くべき連立常微分方程式の斉次方 程式は次式のように表される²⁾。

$$\begin{cases} [\mathbf{M}]\{\ddot{\boldsymbol{\nu}}\} + [\mathbf{C}^{*}]\{\dot{\boldsymbol{\nu}}\} + [\mathbf{K}]\{\boldsymbol{\nu}\} - [\mathbf{L}]^{T}\{\dot{\boldsymbol{u}}\} - [\mathbf{C}]^{T}\{\dot{\boldsymbol{\mu}}\} = \{\mathbf{0}\} \\ [\mathbf{L}']\{\dot{\boldsymbol{\nu}}\} - [\mathbf{L}]\{\boldsymbol{\nu}\} + [\mathbf{H}]\{\boldsymbol{u}\} + [\mathbf{G}]\{\dot{\boldsymbol{u}}\} = \{\mathbf{0}\} \\ - [\mathbf{C}]\{\boldsymbol{\nu}\} = \{\mathbf{0}\} \end{cases}$$
(4)

ここに、 $\{\mu\}$ は Lagrange の未定乗数であり、 [C]は線形制 約条件を表すマトリックス、 $-[C]^{*}\{\mu\}$ は節点に加わる束縛 力を表す。

とおくと、式(4)は、

となる。ここに、

$$\begin{cases} [\mathbf{M}]\{\dot{\mathbf{w}}\} + [\mathbf{C}^*]\{\dot{\mathbf{w}}\} + [\mathbf{K}]\{\mathbf{v}\} - [\mathbf{L}]^r \{\dot{\mathbf{u}}\} - [\mathbf{C}]^r \{\dot{\mathbf{u}}\} = \{\mathbf{0}\} \\ [\mathbf{M}]\{\mathbf{w}\} - [\mathbf{M}]\{\dot{\mathbf{v}}\} = \{\mathbf{0}\} \\ [\mathbf{L}']\{\dot{\mathbf{v}}\} - [\mathbf{L}]\{\mathbf{v}\} + [\mathbf{H}]\{\mathbf{u}\} + [\mathbf{G}]\{\dot{\mathbf{u}}\} = \{\mathbf{0}\} \\ - [\mathbf{C}]\{\mathbf{v}\} = \{\mathbf{0}\} \end{cases}$$
(6)

と書き換えることができる。式(6)の連立常微分方程式をまとめてマトリックスで表現すれば、

$$[\mathbf{A}]\{\dot{\mathbf{x}}\} = [\mathbf{B}]\{\mathbf{x}\} \tag{7}$$

$$\begin{bmatrix} \mathbf{A} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \mathbf{C}^* \\ \begin{bmatrix} \mathbf{M} \end{bmatrix} & \mathbf{O} \end{bmatrix} \begin{bmatrix} \mathbf{O} \end{bmatrix} \begin{bmatrix} \mathbf{O} \\ \begin{bmatrix} \mathbf{O} \end{bmatrix} & \begin{bmatrix} \mathbf{O} \end{bmatrix} \begin{bmatrix} \mathbf{O} \end{bmatrix} \begin{bmatrix} \mathbf{O} \\ \begin{bmatrix} \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{O} \end{bmatrix} \begin{bmatrix} \mathbf{G} \end{bmatrix} \begin{bmatrix} \mathbf{O} \end{bmatrix} \begin{bmatrix} \mathbf{O} \end{bmatrix} \\ \begin{bmatrix} \mathbf{U} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{O} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{O} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{O} \end{bmatrix} \begin{bmatrix} \mathbf{O} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{O} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{O} \end{bmatrix} \begin{bmatrix} \mathbf{O} \end{bmatrix} \begin{bmatrix} \mathbf{O} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A}$$

である。

ここで、 $\{v\} = \{v_0\}e^{i\iota}$ および $\{u\} = \{u_0\}e^{i\iota}$ 、 $\{\dot{\mu}\} = \{\dot{\mu}_0\}e^{i\iota}$ と表されると仮定すると、

$$\{\mathbf{x}\} = \{\mathbf{x}_0\} e^{\lambda t} \quad , \subset \subset \{\mathbf{x}_0\} = \begin{cases} \{\mathbf{y}_0\} \\ \{\mathbf{w}_0\} \\ \{\mathbf{u}_0\} \\ \{\mathbf{u}_0\} \\ \{\mathbf{\mu}_0\} \\ \{\mathbf{\mu}_0\} \end{cases} e^{\lambda t}$$
(9)

が得られる。このように表される {x} が存在するのであれば、次式で表される一般固有値問題に帰結する。

$$\lambda [\mathbf{A}] \{ \boldsymbol{x}_0 \} = [\mathbf{B}] \{ \boldsymbol{x}_0 \}$$
(10)

なお、この一般固有値問題を解いて得られる固有値と固有 ベクトルは、一般に複素数と複素ベクトルであり、本稿では 固有モードが共役な複素固有値に対応する複素固有ベクト ルの実部と虚部の線形結合で表されることから固有モード を複素固有ベクトルの成分の実部で表されるモードと虚部 で表されるモードを用いて間接的に表現する。

3. 固有振動モードに与える水~土骨格連成効果

地盤の初期値・境界値問題に対して、本稿で示した方法 で固有振動解析を行う際に、地盤を土骨格一相系で与えた 場合と水~土骨格二相系で与えた場合とで得られる固有 モードにどのような違いが現れるか比較する。

3.1 解析条件

計算に用いた有限要素メッシュを図 1 に示す。高さ 30(m),幅1(m)とした。計算は二次元平面ひずみ条件で行 い,無限に続く水平地盤を想定して、一次元メッシュを用 いるとともにメッシュ側面には周期境界を与え、メッシュ 下端水平方向には粘性境界(p=2.0g/cm³, Vs=570m/s)を与え た。一見すると,棒の振動を考えるような条件に見えるが、 左右両方向に同じ地盤が連続している条件になっている。 表 1 に地盤の材料定数および初期値をそれぞれ示す。材 料定数は砂を想定した値となっている。また、初期の比体 積を1.4 として地盤内で一定とした。連成させる場合は水 の体積圧縮率を9.81×10²¹(kN/m²)とした。以上の計算条件 のもとで、2. で示した方法を用いて、地盤を土骨格一相 系で与えた場合と水~土骨格二相系で与えた場合につい て固有振動解析を行った。

表 1 材料定数および初期値

地盤の弾塑性性状								
≪弾塑性パ	ペラメータ	»	≪発展則パラメータ≫					
圧縮指数	ĩ	0.180	正規圧密土化指数	т	0.300			
膨潤指数	ĸ	0.012	構造劣化指数	а	2.500			
限界状態定数	М	1.500		b	0.800			
NCL の切片	Ν	2.300		С	2.000			
ポアソン比	v	0.400		C _s	1.000			
			回転硬化指数	b_r	0.200			
透水係数(cm/s)	k	0.100	回転硬化限界定数	m_{b}	0.450			
≪初期値≫								
比体積	v _o	1.400	静止土圧係数	K_0	1.000			
構造の程度	$1/R_0^*$	1.000	異方性の程度	K _β	1.000			

(8)

計算によって得られた固有振動数・固有モードを図 2, 図3に示す。なお、本稿では計算によって得られた固有振 動数の最小値から順に第1固有振動数,第2固有振動数と している。また、同図の実部および虚部は複素固有ベクト ルの成分の実部で表されるモードと虚部で表されるモー ドをそれぞれ表している。

図 3 固有振動数および固有モード(水~土骨格二相系)

図 2 に示す地盤を土骨格一相系で与えた場合の固有モ ードに着目すると,第 2 固有モードからも分かるように, 地盤の体積変化を生じさせるモードが現れることが見て 取れる。一方,図 3 の地盤を水~土骨格二相系で与えた場 合の固有モードに着目すると,どのモードも等体積変形を 生じさせるようなモードであることが見て取れる。これは 非圧縮性の水によって土骨格が束縛されていることが原 因であると考えられる。つまり,2. で示した方法は間隙 水による土骨格の束縛を考慮した固有振動解析手法であ ることが確認できる。

4. 土構造物・地盤系の地震応答解析

本章では、まず、土構造物を有する地盤に対し、2. で 示した方法を用いて固有振動解析を行い、系全体としての 固有振動数および固有モードについて調べる。次に、ここ で得られた固有振動数と同じ振動数の規則波を地盤下端 に入射することによって、土構造物・地盤系の相互的な振 動特性を把握する。

4.1 解析条件

計算は二次元平面ひずみ条件で行い,水平飽和粘土地盤 の上に盛土を施工した場合を考える。計算に用いた有限要 素メッシュを図4に示す。粘土地盤の境界条件として地盤 下端の水平方向に粘性境界(*p*=2.0g/cm³, *Vs*=570m/s)を与え, 側方には周期境界を与えた。盛土は飽和状態とし,水~土 骨格二相系の弾塑性有限要素を図4に示す位置に追加し, 圧密が終了するまで計算を行った。ここでは,実際の盛土 とは異なり,一回で全ての盛土要素を地盤上に立ち上げ, 定常状態に落ち着くまで圧密放置を行った。表2および表 3に計算で用いた地盤と盛土の材料定数および初期値を示 す。粘土地盤にはトチクレーの材料定数を用い,盛土材に は珪砂7号とトチクレーを混ぜた中間土の材料定数を用 いた⁶⁾。以上の条件より,圧密放置後の土構造物・地盤系 に対し,2.で示した方法を用いて固有振動解析を行った。

図 4 有限要素メッシュ図

表	2	粘土地盤の材料定数および初期値
---	---	-----------------

粘土地盤の弾塑性性状								
≪弾塑性パラメータ≫			≪発展則パラメータ≫					
圧縮指数	ĩ		0.060	正規圧密土化指数	т	1.200		
膨潤指数	ĸ		0.025	構造劣化指数	а	0.800		
限界状態定数	М		1.100		b	1.000		
NCL の切片	N		1.642		с	1.000		
ポアソン比	v		0.300		c_s	0.300		
				回転硬化指数	b_r	0.001		
透水係数(cm/s)	k	2	.0×10 ⁻⁶	回転硬化限界定数	m_b	1.000		
≪初期値≫								
比体積	V ₀		1.730	静止土圧係数	K ₀	0.6658		
構造の程度	1/R	* 0	30.00	異方性の程度	K _B	0.6658		

表 3 盛土の材料定数および初期値

			盛土の	弹塑性性状			
≪弾塑性パラメータ≫				≪発展則パラメータ≫			
圧縮指数	ĩ		0.052	正規圧密土化指数	т	0.028	
膨潤指数	$\tilde{\kappa}$		0.008	構造劣化指数	а	0.800	
限界状態定数	М		0.750		b	1.000	
NCL の切片	Ν		1.880		с	1.000	
ポアソン比	V		0.200		C _s	0.650	
				回転硬化指数	b_r	30.00	
透水係数(cm/s)	k	2	.0×10 ⁻³	回転硬化限界定数	m_{b}	0.960	
≪初期値≫							
比体積	v _o	_	1.700	静止土圧係数	K_0	0.750	
構造の程度	1/ <i>K</i>	2°	1.300	異方性の程度	K _B	0.750	

4.2 土構造物・地盤系の固有振動数と固有モード

計算によって得られた第1固有振動数・固有モードを図 5に,第2固有振動数・固有モードを図6にそれぞれ示す。 また,同図の実部モードおよび虚部モードは複素固有ベク トルの成分の実部で表されるモードと虚部で表されるモ ードをそれぞれ表している。

図 5 第1固有振動数および固有モード

図 6 第2固有振動数および固有モード

図5を見ると,第1固有モードは地盤の水平方向の運動 に対して同じ向きに盛土が運動するようなモードである ことが分かる。一方,図6を見ると,第2固有モードは地 盤の水平方向の運動に対して逆向きに盛土が運動するよ うなモードであることが見て取れる。

4.3 土構造物を有する地盤の地震応答解析

計算は前章で用いた圧密放置後の土構造物・地盤系を対象とした。入力加速度は正弦波で与え,最大加速度を 0. 05g(m/s²),振動数を前章の計算によって求めた第1固有振動数および第2固有振動数の値とした。なお,以下では規 則波の振動数として系の第1 固有振動数を用いた場合を Case.1,第2固有振動数を用いた場合をCase.2 とする。また,加振中の地盤と盛土の運動履歴を調べる際には図7に示した節点を採用した。

図 7 地盤および盛土の運動履歴を調べる点

Case.1 の場合の地盤および盛土の水平方向の運動を図8 に,鉛直方向の運動を図9にそれぞれ示す。図8を見ると, 地盤も盛土も約6秒まで変位が増大していることが分か る。このことから,加振初期において系全体の固有振動数 が0.457(Hz)付近に存在し,共振が生じていると考えられ る。また,地盤と盛土の水平変位はほぼ同位相で現れてい ることから,前章で得られた系全体としての第1固有モー ドが励起されていることが分かる。加えて,24秒付近か ら地盤と盛土の水平変位がある一定の値に落ち着いてい ることが見て取れる。これは,時間の経過に伴い,粘性境 界による減衰効果によって定常振動状態となっているた めであると考えられる。

Case.2 の場合の地盤および盛土の水平方向の運動を図 10 に,鉛直方向の運動を図 11 にそれぞれ示す。図 10 を 見ると,地盤も盛土も幾つかの波が集まってできる大きな 波,すなわちうなりを確認することができる。したがって, 加振初期における系全体の固有振動数が 0.630(Hz)付近に 存在し,その結果うなりが現れていると考えられる。また, 地盤と盛土の水平変位は加振が進むにつれて互いに位相 のずれを生じている。このことから前章で得られた系全体 としての第2固有モードが励起されていることが分かる。

次に,各 Case における加振終了時までのせん断ひずみ 分布図を図 12 および図 13 にそれぞれ示す。なお、ここで は揺れ方の違いを明確にするため、図中の変位量を3倍し て表している。

図 12 および図 13 より, Case.1 と Case.2 のせん断ひずみ の生じ方を比較すると, Case.2 では盛土と地盤の境界や盛 土直下の地盤にひずみが生じているのに対して Case.1 で は地盤と基盤の境界にもひずみが顕著に生じており, 加振 に伴って円弧上にひずみの局所化が進展していることが 分かる。また, 加振中の系の変形に着目して, 図 12 およ び図 13 の一部分を拡大したものを図 14 に示す。地盤およ び盛土の変形の様子に前述の傾向が現れていることが見 て取れる。

図 8 地盤および盛土の水平方向の運動 (Case.1)

図 14 せん断ひずみ分布拡大図

5. 結論

本稿では、地盤の初期値・境界値問題に対して、間隙水 による土骨格の束縛を考慮した固有振動解析手法につい て示した。今回の解析で対象にしたような有限変形の弾塑 性問題では、幾何学的および材料的非線形性を有するため 固有振動数は時々刻々変化する。このため、線形問題のよ うにその系に真に固有の振動数およびモードが得られて いるわけではないが、それでも土構造物・地盤系の初期の 固有振動数および固有モードが、その系の相互的な振動特 性を把握する上で重要な値となっていることを本稿では 示した。今後は各種土構造物の耐震性評価においても本稿 で示した方法の利用を試みてゆきたい。

参考文献

- Asaoka, A. and Noda, T. : All Soils All States All Round Geo-analysis Integration, International Workshop on Constitutive Modelling - Development, Implementation, Evaluation, and Application, Hong Kong, China, pp.11-27, 2007.
- Noda, T., Asaoka, A. and Nakano, M. : Soil-water coupled finite deformation analysis based on a rate-type equation of motion incorporating the SYS Cam-slay model, Soils and Foundations, Vol. 48, No. 6, pp. 771-790, 2008.
- Christian, J. T.(1968) : Undrained stress distribution by numerical method, Proceedings of ASCE, Vol.94, SM6, pp.1331-1345.
- 赤井浩一,田村武(1978):弾塑性構成式による多次元圧密の 数値解析,土木学会論文集,第269号,pp.95-104
- Foss, K, A. : Coodinates which Uncouple the Equations of Motion of Damped Linear Dynamic Systems, Journal of Applied Mechanics, ASME, Vol.32, No.3, pp.361-364, Spet, 1958
- Noda, T., Nakai, K. and Asaoka, A. (2008): Delayed failure of a clay foundation-embankment system after the occurrence of an earthquake, Theoretical and applied mechanics JAPAN, Vol.57, pp.41-47.