Nonlinear effect on homogenized constitutive laws of soils
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[ABSTRACT] The nonlinear homogenized constitutive law is analyzed by CELL.FORT if strain path
is given. Two simple cases have been shown. The results are as followings: 1) The distribution of stress
level in a unit cell has vital effect on the mechanical properties of mixed soil. The effect of stress level is
dependent on the volume fraction and distribution patterns of inclusions. 2) Stress level in the zone near
the interface is changing rapidly to relax the gradient of micro-stress field. 3) Initial anisotropy will
vanish with progress of the deformation. (4) The nonlinear effect is the results of microstructure evolution

which is depending on the stress/strain path.
1. Introduction

There are many methods to improve soil properties. One 1is to make a mixed soil. In this case, hard
particles are used to form skeleton, and soft clay forms matrix. The loads on this composite foundation
are distributed among skeleton and matrix through its microstructures. It is very important to find an
appropriate method to evaluate the reinforcement effect of foundation improvement. Until now there are
several methods to study this problem but no one considers the nonlinear effect on the constitutive laws
of composite soils, specially the interaction effect of nonlinear constituents in micro-scale.

There are many methods to estimate the overall properties of media with heterogeneous microstructures,
which were proposed by such as Voigt, Reuss, Taylor[1]; Horii & Nemat-Nasser[2], Hori[3], Ortiz[18]
etc. One of the most powerful methods for periodic microstructures is the homogenization theory,
firstly used by Sanchez-Palencia (1970-1974) in seepage problem[4]. This method requires that the
medium is periodic or well random[19]. It has been shown that structures of a unit cell do not affect the
effective properties of strength noticeably and volume fraction is the most important quantity for linear
elastic media special isotropic linear media[5,6]. Another characteristic of a linear problem is complete
separation of microscopic description from macroscopic description. But this is not true for nonlinear
materials specially when they are in the intense interaction among the constituents[6~11]. Homogenization
theory is advantageous over others when the interaction is intensified during nonlinear zone of material
properties[12,13]. Now an increasing tendency on its mathematical aspects of nonlinear homogenization
is seen in both mathematical aspects and application aspects [6~17]. The main concerned point for
mathematicians is the convergence of nonlinear homogenization[14,15], because the convergence of an
asymptotic expansion is the most pressing problem for any type of application problems. Many methods
are proposed to improve the convergence such as correctors [9,14] with two-scale Young measure.
Homogenization has the advantage that it is a mathematical technique based on asymptotics. This fact
allows one to proceed formally, and to apply it over a wide variety of physical problems (linear or
nonlinear) described by partial differential equations. Jansson studied the effect of nonlinear constitutive
equation with power-law on overall behaviors of fiber-reinforced materials and found that some components
of linear elastic response is not greatly affected by the array type, but nonlinear one is quite different[6].
Auriault[13] used power type stress strain relationship (Ramberg-Osgood model) to describe hot
compaction of metal powders and found that stress-strain relation remains the same form both in
micro-scale level and in macro-level. Devries et al[16] introduced damage variables into homogenization
of composite materials. Santosa and Symes[17] considered an internal dissipation boundary in a unit cell
and discovered the boundary only appears in local problem and Paipetis et. al[22] extended to three-
dimensional case. But in authors' knowledge few publications on application of homogenization theory
-to nonlinear properties of each constituent, specially for geomaterials, are published.

This paper extends the homogenization method to the case including nonlinear constitutive laws of each
constituent and applies it to an imagined mixed soil. The mixed soils are regarded as composite materials
with periodic microstructures®, whose smallest repeatable element is called unit cell. The unit cell is
composed of hard constituents such as stone or sand, the skeleton, and soft matrix such as soft clay.
Here we just assume that the skeleton is linear elastic but the matrix is Duncan-Chang's nonlinear
materials. Isotropic compression and Ko-compression cases are computed to study the constitutive
properties of the mixture soils by homogenized theory for plane strain problem as beginnings.
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+ 'Periodic microstructures' is being evolved during loading, but defined at any time or time interval.

2. Formulation of the problem in an incremental form

Infinitesimal deformation process is discussed. There is a body occupying domain € and it is subjected
to a system of body for f(x,y;t) and surface force F(x;f) on I', x[0,T]. Other part of its whole
boundary T is fixed (I" =T, UT}). Its strong form in time interval [¢, £+ At], denoting AT, can be

regarded as parameterized equation set. It is a usual linear equation set parameterized t. Tlme t can.
express the history of loading or true time:

Governing equations

o ‘
Equilibrium equation T” +AfF(x;0)=0 in Q°F xXAT ¢))
j
1 oAu’ dAu; o e
Geometrical relation Ae, (u )=—( + ) in Q°xXAT )
2 o, ox,
Constitutive equation Ao} = Ej, (x,€ ;¢ NAg, (Au®) in QF XAT 3

Boundary condition: Acin; = AF,(x;t) on I'; X AT and Au/ = Az, (x;5)on T', X AT.

wheree = X denotes Y-periodicity and € << 1. y is the fast spatial variable and x is the slow spatial
y

variable. Ej, (x,€.;8) = E, (x,€.;0) = E (x,€.;0) = E, (x,€];1)is the function of strain /stress
history parametrized by time t, generally expressmg a linear or nonlinear constitutive law.
u®(x,y;r) = u(x, y,t)|‘_ , 0' =0,(x, y,t)|v_ . € = £,(x,y;1)|,_x are displacement vector, stress tensor

and strain tensor respectlvely They are all Y- perlodlclty at any tlme t.
++ Generalized constitutive law can be expressed as {do} =[D], {de}. Its finite incremental form is

{aAc}=|"[D] {de}= g(Ae) =[E(x,e5;0)|{Ae} and £ €[t, £+ ArJ#

3. Asymptotic expansion

E+AE

rs?

The homogenized constitutive law in incremental form{24]

<Ao, >=Ej (x,£,)Ag, : C))

%)

L 1dy : (5)+++

) ow’
whereE ' (x, € )=— E (x,e )66 ——16,0, ~

|Irqnp g n 3‘ Pk ml

< om

and characteristic functlons W"' are determined by the following unit cell problém:
0

Aul (x,y;8) = — W“(y) . ~+c(x;t) (6) ay{ E;;(x,e)[Ag; +Ag;1} =0 (D)

with Y-periodicity boundary condition, we solve

Pq
I Efy () I D Ve g, jE,f,Pq(x,ers)a‘/}‘ dy forany V, =V,(y) with Y-periodicity.  (8a)

dy; M,
or jy E;;(x€, )A€, 6e“dy=_[YEf,,.j(x,em)Ae;&k,dy (8b)
Then, the micro-stress-strain relation is given by: A0, (X3 t) = AO';J. = “U (x,s )[AS + Ae ] )
A 1 JdA A
A‘,],_l(o'?uk BAu,) pe =1 (8u 8u,)
2 ok, ox, 2 9y ay,

Above gives an equivalent constitutive relation, that is , Strain 8; Vs O'Z =<0; (x,y) > is easily determined
if the microstructure and all micro-constitutive laws of each constituent are known in a unit cell. The
0',.'1'. ~ 8; is consistent to that tested in Lab. What is the difference from usual one is that the interaction
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of microstructures is emphasized in this proposal. A program CELL.FORT is implemented to find out
the homogenized constitutive law (eq.(4)), whose nonlinear equations are solved by Newton-Raphson

Method or incremental method. Fig.1 shows the relationship between local problem to find [D]h out and
global problem to find {8"} or {o"’} out. This requires iteration techniques between local problem and

global one for nonlinear constitutive laws. CELL.FORT is called one time at one step to form [D]h at

each Gaussian point of every global element. Following calculation is carried out under £° -path given.
+++Let V, =W/ in Eq.(8a) and substitute it into usual coefficients Eq.(5) can be obtained #

CELL.FORT COND2.FORT CELL.FORT
In {e°}

[D
Cell Problem |~————————_gp [Global Problem | ————g-

or o}

onlinear Constitutive Model
For Every Constituents

Fig.1 Numerical Scheme

X 3 T o

Macroscopic Structure Unit Cell

> x
Fig.2(a) The Periodic Microstructures Fig.2(b) Mesh of a Unit Cel!

4. Nonlinéar constitutive laws of each constituent

Duncan & Chang (1970,1972; 1980) proposed a nonlinear model as followings. There are a lot of
reference parameters for this model (T.D. Stark, 1994)[21]:

Loading
G- Flg(2)
R.(1—-sin¢)o,-0,)_,
E’____K.Pa(o-3+o-d)n[1_ f( ¢)( 1 : 3)_ ur:__—[}
P, 2Cecos¢+20,sin¢ (1-Deg))"
) (10a,b,c)
€ = (01 - 0-3)
1= =si —
Kop @ty KOZONG, 2 0)
A 2Cecos¢+20,sin¢
Unloading or Reloading
Eur = Kur ¢ Rl(%)nﬂ ” =03 (1 la’b)

a
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R, is called failure ratio; C,¢ are parameters of material strength, and E,, u,, E _ are elastic modulus,
of loading, Poisson ratio and elastic modulus of unloading/reloading, respectively. 0,0, are maximum
principal stress and confining stress. €, is the axial strain in conventional triaxial experiment. P, is
atmospheric pressure. K, K, 64, n, ny, G, F, D, C, ¢ are all parameters of the Duncan-Chang model.
$=30", C=02, R, =0716, 6, =80, K=202, K, =347.]

for one compacted soil fromo, = 10kpa.
n=1094, n =083, G=031, F=0.04, D=2.1 '

Loading function proposed by Duncan (1978) f = (i%(ag)“5
0, -0
1 aly
Loading Criterion is: f, 2(f,)  :Loading; f < 0.75(f;) . :Completely unloading/reloading;
l—fl / (fl) . . |
E=E +(E,-E)———®% :Otherwise
1-0.75

5. Simple Case Studies

See Fig.2(b). A is Duncan-Chang material and B is linear elasticity. Four cases are studied: Hard and
Soft Cores + Strain Paths: K -Case and Isotropic Compression. Hard core: £ = 4000kgf / cm?2 u =0.3Soft
core: E =200kgf /cm2 u=0.3. Homogeneous material refers to there is only material A no B.

5.1 Comparison between incremental method (no iteration) and Newton-Raphson method (iteration)

Discretized eq.(8) can be expressed as: K(a)a = F(a) (12)

a is characteristic function vector or fluctuation displacement «' on spatial variable y. K(a)=LDL is
used to save computation time. There are two methods to solve nonlinear equation (12): Incremental
method (No Iteration) and Newton-Raphson iterative technique (Iteration). Fig.3 is the effect of different
steps in incremental method. The step has a little effect on the convergence (see Fig.3(a)), but when step
is small enough, results are almost the same, see Fig.3(b). Fig.4 shows that iterative technique and
incremental method have a little difference, it means that under usual condition incremental method is
enough to reach the required precision. Fig.5 is equivalent stress-strain of x direction. There is no vital
difference for two methods. Furthermore, it may be surprising that the Young's moduli decrease first
and increase then for Duncan-Change model under Ko-case loading, see Fig.6(a). This means that

* . Duncan-Chang Model is not proper to Ko-case or proportional loading. The stress-path for lateral
constraint case is nearly straight line (see Fig.6(b)).

Fig.3 (b} Isotropic Compression for Duncan Model
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Fig.3 Effect of Step Length for Incremental Method
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Fig.4(a) lteration, No Iteration for Shear Moduli
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Fig.4 Comparison between Incremental Method and Newton-Raphson Method
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Fig.6 The Evolution of Young's Moduli and Stress Path
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5.2 Initial anisotropy

Fig.7 shows the effect of initial anisotropy for hard core and soft core. It shows that initial anisotropy
will vanish with deformation precedes. If the two materials are similar each other, the initial anisotropy
vanish quickly (Fig.7(a,b)). But the difference between adjoining materials is too large to vanish
completely or vanish slowly (Fig.7(c)). Above behaviors can be explained from the evolution of stress

level contour during deformation.

Fig.7(a) Vanishing of Initial Heterogeneity for Soft Core

Fig.7(tb) Vanishing of Initial Heterogeneity for Hard Core
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Fig.7(c) Effect of Initial Heterogeneity lor Hard Core
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Fig.7 Vanishing of Initial Anisotropy during Deformation

5.3 Microstructural effect on mechanical properties

If the volume fraction of inclusions is kept 25% (Scheme 3 is 26%) and the inclusions have different
patterns in a unit cell (Fig.8). The evolution of moduli is shown in Fig.9. It shows that the uniform
distribution has highest deformation moduli. But the concentrated distribution is the weakest one.

R 11
Scheme Schenw 4

1

Scheme 2

Scheme 1

Fig.8 Four Patterns of Microstructures
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= Fig.9(a) Effect of Different Microstructures % Fig.9(b) Effect of Different Microstructures

= =

& 900 ! ' ! ! 900 £ 900 : : ! = 900

= : C  Scheme | : : pt : : H

S o : T Scheme2 : : 2 v O Scheme |

g 850 -t o Y  Scheme3 | i & - -850 2 850 g - O Scheme 2 i . .| 850

= : . : (o2 = v ¥ Scheme3 {: '

-~ [T ¢ Schemed o [o T A v . Scheme d |-

> 800 4-& 900 Y " OOUQ 800 >_-" 800 -4 B : 800

= v0 O?OOO? : = o "'vvvvvvvvv'

2 750 § 3 s : : 750 £ 75040y é : ; — 5T 750
: : o

é 1y 0g ao an? § 0. 000000060000 ;

A "ovv D:’DUGDUFJ va“' S opTee L, 700 o : vl op700

S . Vvvvv77V' : 20 o054 = : :

E 650 b *4 » 650 3 650 - relOa a 40 650

> *e P + > : *s Tonggoatt

Z 0090.00 : = E ‘0,.“"”..,

2 6004 -—-- . -+ ; ~———+4600 2 600 f———; : : , . _Lesoo

2 1 2 .3 4 S 5 1 2 3 4 5

& Axial Strain for Lateral Constraint Case (%) g Axial Strain for Lateral Constraint Case (%)

Fig.9 The Evolution of Young's Moduli during Loading

5.4 Effect of volume fraction

It should be noticed that the failure problem is a little different from deformation problem because the
controlling factors are different. The failure problem will be discussed in another paper.

5.5 The induced anisotropic effect

The induced anisotropy is induced by the residual stress, which is a self- equilibrated stress in a unit cell
but has vital effect on coming mechanical behaviors because of nonlinearity of materials.

Some detailed discussion will be found in [25].
6. Conclusions

(1) The homogenized constitutive laws are not only dependent on the mechanical behaviors of all
constituents, but also dependent on the microstructures. The distribution of micro-stress or micro-strain
field has vital effect on the macro-behaviors or coming mechanical behaviors and the nonlinearity of
materials intensifies this effect.

(2) Nonlinear materials have self-cured capability because the nonlinearity can adjust the micro-stress
field to reduce the difference in micro-stress. This is why the initial anisotropy may vanish gradually
with the deformation.

Above studies are not enough to conduct such conclusions, further investigation is being made for
various materials and micro-constitutive laws in Ichikawa's Laboratory of Nagoya University.

The assistance of Mr. Tsuji and Mr. Ogasawana, Master students in Ichikawa's Laboratory of Nagoya
University, are gratefully acknowledged to provide a figure-out program.
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