陥没発生時における緩み領域の範囲予測

(Prediction of the extent of the loosening area before ground depression)

吉田千華¹,前田健一²,小橋朋弥³,榊原淳一⁴

- 1 名古屋工業大学大学院・工学専攻環境都市プログラム・E mail address c.yoshida.620@stn.nitech.ac.jp
- 2 名古屋工業大学教授高度防災工学センター
- 3 名古屋工業大学大学院・工学専攻社会工学系プログラム
- 4 JFE シビル株式会社

概 要

全国各地で地下埋設管の劣化を起因とする陥没災害が発生している。今後地下インフラの劣化により陥没 災害の件数は増加することが考えられ、予防保全は急務である。既往研究では Terzaghi の緩み土圧理論を 用いて陥没災害の発生要因である地盤の緩み領域を推定したが、緩み幅において実測値と予測値に乖離が 見られた。本稿では JFE シビル株式会社の所有する音響トモグラフィ地盤探査手法を用いて、地下水位以 深の空洞・緩みの可視化を試みた。また、粉体工学のファネルフローによる従流動部の幅の推定方法を参 考に緩み領域推定の実験的検討を行った。音響トモグラフィ地盤探査手法を用いた結果、速度低下や減衰 率の増加から空洞発生や緩み領域の有無が確認できた。また粉体工学の流動境界線の式を用いた結果、緩 み領域の実測値と予測値に 2~3 倍の差がみられるが平行な直線関係にあることが判明した。

キーワード: 陥没, 緩み, 音響トモグラフィ, 浸透流

1. はじめに

全国で年間約 10,000 件の陥没災害が発生しており,原 因の大半は地下埋設管の劣化に起因する欠損から管内へ の土砂の流出である。陥没災害は地表面からの予測が困 難な一方で,ひとたび発生すれば被害が大きいため,予 防保全への転換が求められている。現在は陥没災害を未 然に防ぐために,地中レーダーを用いて路面下空洞探査 が行われているが,地下水位以深の空洞判定や緩み領域 を捉えることができない。そこで,JFEシビル株式会社の 所有する音響トモグラフィ地盤探査手法を用いて,地下 水位以下の空洞・緩みの可視化を試みる。

また、土砂の流出に伴う緩み領域の進展メカニズムの 推定は重要な課題となっている。密に作られた地盤が土 粒子の流出に伴い緩くなった領域を緩み領域とする。現 地調査や蓄積された実験データでは Kenny の指標を用い て内部侵食発生可能性がないとされる場合においても、 空洞や緩み領域の発生が確認されている。従って、緩み 過程において内部侵食が発生するものと、発生しないも のの2つに区別して考える必要がある。既往研究では、 内部侵食が発生する場合の緩み領域について Terzaghi の 緩み土圧理論を用いて推定が行われているが、内部侵食 が発生しない場合においては緩み領域の推定が行われて いない。本研究では、内部侵食が発生しない場合におい て,粉体工学の貯槽排出挙動の観点から緩み領域の推定 を行った。

さらに, 蓄積された実験データより効率的かつ定量的 な予防保全方法を提案する。陥没の進展は(1)欠損閉塞, (2)土砂の流出挙動,(3)内部侵食に大別され,構造力学, 砂防工学等の知見を活かし複合的にとらえる必要がある。 これらを基に陥没危険度評価を行い,危険度を分岐する 指標の提案を行う。

本稿の流れを以下に示す。第2章では,JFEシビル株式 会社の所有する音響トモグラフィ地盤探査手法を用いた 地下水位以深の地盤可視化実験を行い,解析を行うこと で土粒子の流出に伴う地盤内への影響を検討する。第3 章では緩み領域の推定を検討する。3.1節では,内部侵食 が発生する場合の緩み領域推定を検討する。3.2節では, 内部侵食が発生しない場合の緩み領域の形成について粉 体工学の観点から実験的検討を行う。第4章では,空洞 形成過程における危険度評価フローを示す。4.1節では構 造力学を用いて欠損が閉塞するための閾値を示す。4.2節 では砂防工学の視点から土粒子の流出濃度について考察 する。4.3節では地盤工学の視点から内部侵食発生可能性 についての指標を示す。4.4節では4.1~4.3節の知見からま とめた危険度評価フローを示す。第5章では第2~4章で得 られた知見からまとめを行う。

音響トモグラフィ地盤探査手法を用いた地下 水位以下の地盤の可視化

2.1 音響トモグラフィ地盤探査手法の概要

本手法は榊原・山本²⁾によって開発された高周波数の弾 性波を用いた高精度な地盤調査手法である。音響トモグ ラフィ地盤探査手法は孔間トモグラフィ技術に分類され, 孔間における地盤断面の構造や特性を可視化することが できる。計測孔の一方に発振器を設置し、発振波として 周波数を制御した疑似ランダム波を用いていることに特 徴がある。疑似ランダム波とはパルス圧縮と呼ばれる信 号増幅方法の一種である。送信波として連続波を用いる ことで時間軸上にエネルギーを分散させ、送信信号全体 としてエネルギーを大きくすることができる。疑似ラン ダム波の例を図1に示す。発振波(a)と実際の受信は(b)の 相関関数計算後の波形(c)からピーク値となる波の到達時 間および到達波の受信エネルギーを取得する。これによ り、従来の弾性波探査と異なり、速度分布および減衰率 分布の2つの観点から地盤断面の可視化を可能とする。 従来の弾性波探査では速度分布図のみの表現であったた め,地盤の密度やガス等の判別が困難であったが,減衰 率を扱うことで判別が容易となった。

図1 疑似ランダム波の例

2.2 実験概要

図2に模型実験土槽の概略図を示す。土槽内部にセン サを挿入する塩ビ管を設置した。センサは埋設管中央部 から5cm間隔に12個設置した(図3)。実験には珪砂7号を 使用し,相対密度を80%となるように作成した。また, 外水位条件を300mmとする。外水位は実地盤における地 下水位を想定している。間隙水にはスギヤマゲン株式会 社の大容量・高気密性のキミツ缶(図4)を用いて作成した 脱気水を使用する。

土槽の作成方法を以下に示す。①模型実験土槽に脱気 水を溜め,飽和状態の試料を水中落下させる。②10cm 毎 に気泡が確認できなくなるまで撹拌を行う。③バイブレ ータを用いて, 土槽外部から振動を与え締固めを行う。 ④土槽作成後, 外水位条件に設定する。外水位は実地盤 の地下水位を想定しており, 地下水位以深を飽和, 地下 水位以浅を不飽和として実験を行う。

音響トモグラフィの計測は実験開始から1分毎に行う。 通常の音響トモグラフィ測定は発振センサがひとつのみ であり計測時間がかかるため、本実験では同時多重発振 方法を用いる。

図2 模型実験土槽の概略図

図3 使用するセンサ

図4 キミツ缶

2.3 実験結果及び考察

図 5 に実験開始 0, 1, 3, 5, 10 分後の模型土槽の様子, 音響トモグラフィを用いた計測より得られた速度分布図 と減衰率分布図を示す。音響トモグラフィは地下水位深 を対象としているため、外水位 300mm 以深の波形デタの み解析する。速度分布図は速度が大きいほど赤色で小さ いほど青色で示される。また、減衰率分布図は減衰率が 大きいほど赤色で、小さいほど青色で示される。

実験開始1分後には、速度分布の変化は見られなかった が、減衰率分布において、欠損直上にあたる部分で減衰 率の増加がみられた。土粒子の流出に伴い、欠損近傍の 地盤が緩んでいるためだと考えられる。実験開始から1 分後と3分後では局所的な速度低下や減衰率の増加は確 認できないが、全体的に速度低下や減衰率の増加がみら れることで、土粒子の流出および浸透流の発生が地盤内 全体に影響を与えていると考えられる。実験開始から5 分後には大幅な速度低下がみられた。欠損から200mm上 部の位置においてアーチ状に縁取られるように減衰率の 低下が確認できる。緩み範囲が欠損位置から上部に進展 し、緩み領域の上端がアーチ状に形成されていると考え られる。実験開始から 10 分後に空洞の発生が確認できた。 欠損から 200mm から 300mm の位置に減衰率の低下がみ られ,空洞の位置と一致している。しかし局所的な大幅 な速度低下や減衰率の増大が見られなかった。確認でき た空洞内が地下水で満たされているためだと考えられる。

減衰率の低下範囲が欠損近傍と緩み領域境界の2点に 局所的変化がみられる。欠損近傍は土粒子が連続的に流 出しており,その他の範囲においても同様に土粒子は流 出するが,上部からの土粒子が流入し続けるため,減衰 率低下の反映される範囲に差が生じていると考えられる。

3. 空洞および緩み領域の範囲予測

3.1 実験概要

図6に実験の概略図,表1に実験条件,図7に試料の粒 度分布を示す。土槽下部に下水道管の模擬管渠を設置し, 欠損を設置した。土槽作成時には欠損にゴム栓をし,ゴ ム栓を外すことにより欠損が生じた管渠周辺地盤を再現 する。外水位,試料,欠損等の条件を変化させ実験を行 った。S6:4 と S5:5 の混合珪砂を内部侵食が発生するケー スとし, 珪砂 7 号を内部侵食が発生しないケースとして 実験する。S6:4 は珪砂 7 号と珪砂 2 号を重量比 6:4 で混合 した試料である。外水位は実地盤の地下水位を想定して いる。

Unit : mm

図 6 模型実験土槽の概略図表 1 実験条件

	内部侵食発生〇	内部侵食発生×
外水位 (mm)	100,200,300,400,500	100,300,500
試料	S6:4,S5:5	珪砂 7 号
欠損径 <i>d_s(mm</i>)	円(5), スリット(7.5,10,20)	円(5)

図7 実験に用いた試料

3.2 内部侵食発生時の緩み領域推定

図 8 に内部侵食発生時の様子示す。内部侵食とは,浸 透流の影響により地盤の間隙中を一部の粒形の小さい粒 子が通り抜け,粗粒化が見られる。

図8 内部侵食発生時の欠損近傍の様子

3.2.1 緩み体積推定

管路からの累積流出土量により,緩み体積Vを求める。 緩み体積は密詰めであった地盤が内部侵食により緩詰め になったと捉えて間隙比の変化より,式(1)により求める。

$$V = \frac{M}{\left(\frac{l}{l+e} - \frac{l}{l+e_{\max}}\right)} \tag{1}$$

ここで, 乾燥土の累積流出土量M, 間隙比e, 最大間隙

比emaxである。図9に式(1)により求めた値と実測値の関係 を示す。予測値と実測値がおおよそ近しい値をとること が判明した。よって,式(1)が緩み体積を求めるために適 していると考える。

3.2.2 Terzaghi の緩み土圧理論を用いた緩み領域推 定

図 10 に実験時の様子を示す。緩み幅推定については Terzaghiの緩み土圧理論³⁾を適用する。これはトンネル工 学において、トンネル掘削に伴う緩み土圧とその範囲を 算出できるものである。図 11 に概念図を示す。緩み幅*B*₀ は式(2)より算出する。

$$B_0 = R_0 \cot\left(\frac{\pi/4 + \phi/2}{2}\right) \tag{2}$$

ここで、R₀はトンネル内径、¢は土砂の内部摩擦角であ る。欠損形状により緩みの元が異なるため、欠損形状が 円形の場合は欠損半径、スリットの場合は管渠半径をト ンネル内径R₀に代入した。図 12に式(2)により緩み幅の予 測値と実測値の関係を示す。実測値と予測値に乖離がみ られた。この理論を適用するにあたり、実測値の緩み幅 を整理すると、外水位が上昇すると緩み幅が増加し、水 位が上昇・加工を繰り返す場合においても緩み幅がさら に増加することが判明した。

図9 緩み体積の予測値と実測値の関係

理論における概略図

図12 緩み幅の実測値と予測値の関係

3.3 内部侵食発生しない場合の緩み領域推定

実験時の様子を図 13, 14 に示す。内部侵食が発生しな い場合においても、土粒子の流出に伴い緩み領域が発生 していることが確認できる。土粒子の流出挙動に着目す ると、欠損に対し鉛直方向に土粒子の動きがみられ、緩 み領域は鉛直方向に伝播した。この土粒子の流出挙動が 粉体工学のファネルフローに類似している。

図13 実験時の様子

図14 欠損近傍の様子

3.3.1 粉体工学用いた緩み領域推定

ファネルフローとは粉粒体貯槽における排出時の粉粒 体の流出挙動のひとつであり,主流動部と流出しにくい 従流動部,静止部が存在する(図 15)。本稿において,緩 み領域はファネルフローにおける主流動部と従流動部と して考える。三輪ら⁴⁵⁾の流動境界線の式(3)を適用する。

$$B/D_0 = 1.55\sqrt{H/D_0}$$
 (3)

従流動部の幅を緩み幅と仮定し,緩み幅Bについて式 (3)に示すように,欠損径D₀,層高Hを代入した。実測値 は流動境界線の式と同様に層高と従流動部の幅は直線関 係にあるといえる(図 16)。その値は流動境界線の式より も大きく,その差は 2~3 倍であったが,平行な直線とな っている。

図17に実験開始1分後と10分後の欠損付近のPIV解析 結果を示す。すべてのケースにおいて欠損直上に鉛直下 向きに土粒子の動きがみられた。同時刻における土粒子 の流速を比較すると,外水位が高くなるほど流速が大き い。また,経時変化を比較すると10分後の方が流速は大 きい。粉体工学において流出速度は層厚に無関係で一定 とされている。しかし,外水位条件や経時変化による土 粒子の流出に速度差が生じた。

粉体工学の重力流動には浸透流が考慮されていない。 したがって,緩み領域における緩み幅の増大は外水位増 加に伴う浸透流の流速増加による影響だと考えられる。

また,式(3)についてa=1.55とし,このaが外水位による 変数だと仮定すると,外水位条件が 100mm,300mm, 500mmでa=2.96,3.44,4.31と導かれた。これらの値を使う ことで緩み幅を推測できると考える。今後,緩み高さを 推定し,緩み領域の推定を行う必要がある。

図 15 粉体工学のファネルフローの概略図

図16 層高と緩み幅の関係

図 17 PIV 解析における欠損近傍の土粒子の流速

4. 空洞形成過程における危険度評価フローの提案

4.1 欠損部における閉塞の有無

実験から得られた空洞形状は4つに大別され(図18),空 洞形状指標が大きいほど大規模な空洞が発生しており, 陥没に対する危険度が高い。大規模な空洞とそれ以外の 空洞形状を分けるのは欠損部での閉塞の有無であると考 えられる。欠損閉塞の有無を判別する指標として,欠損 径と95%粒形の比 d_s/D_{95} を導入する。スリット砂防ダム の設計指針の考え方⁶⁷⁷⁸⁹⁹を応用し,大粒子(試料の95%粒 形)により欠損が閉塞する際の粒子数を求めている。図19 に空洞形状指標と d_s/D_{95} の関係を示す。 $d_s/D_{95} \leq 1.5$ の場合, 大規模空洞が発生せず欠損は閉塞している。これは構造 力学的観点からも土粒子間をヒンジとして考えると,粒 子数が2個以下の時に安定であることに当てはまる(図20)。 以上から、 $d_s/D_{95} \leq 1.5$ を欠損閉塞条件として妥当な指標 であるといえる。

図19 空洞形状指標とd_s/D₉₅の関係

図 20 目詰まり構造の安定性

4.2 管路への土砂の流出挙動

図21に実験で得られた土粒子濃度(土粒子の流出量を水 と土粒子の流出量で除したもの)を示す。土粒子濃度は欠 損解放直後に最大値(最大土粒子濃度とする)をとり、時間 経過とともに収束する。最大土粒子濃度が高いほど、大 規模空洞が発生する。空洞形成の規模を判別する指標と して、砂防工学における土石流・掃流状集合流動を導入

図18 実験結果より得られた空洞形状

する(図 22)。大規模空洞においては土石流を,三日月形 空洞においては掃流状集合流動の挙動を適用する。高橋 ¹⁰によれば土石流,掃流状集合流動発生時の最大土粒子 濃度, *C*_{*}, *C*_l(%)は式(4), (5)から求められる。

$$C_* = \frac{\rho \tan \theta}{(\sigma - \rho)(\tan \phi - \tan \theta)} \tag{4}$$

(5)

 $C_l \approx 0.4C_*$

ここで、 σ 、 ρ は土と水のそれぞれの密度、 θ は勾配の傾 斜角、 ϕ は土砂の内部摩擦角である。これらより求めた最 大土粒子濃度と実験値を比較したものを図 13 に示す。三 日月形空洞発生時には実測値が最大土粒子濃度 $C_l(%)$ を下 回り、大規模空洞発生時には実測値が $C_l(%)$ を上回ってい る。よって、試料固有の最大土粒子濃度が掃流状集合流 動時の最大土粒子濃度 $C_l(%)$ を上回っている場合は大規模 空洞が発生するといえる。

4.3 内部侵食発生可能性

最大土粒子濃度を下回り,三日月型空洞形成時に内部 侵食がみられた(図 8)。

内部侵食に対する地盤の安定性の評価には Kenny の指標¹¹⁾を適用する。Kenny らは,粒径Dの移動を阻む粒子(粒径Dの4倍粒径4D)の含有率(H)と粒径Dの含有率(F)の比H/F<1のとき内部侵食が発生すると述べている。なお,内部侵食が発生する小粒子の含有率は30%であるため,この範囲について検討する。

図 24 に実験試料に Kenny の指標を適用したものを示す。 30%粒径までの範囲で H/F (赤線)が安定境界である H/F=1(青線)を下回っている場合,内部侵食が発生すると いえる。S6:4,礫では内部侵食が発生し,洗い山砂では 内部侵食が発生しない。

4.4 危険度評価フロー

以上の知見よりまとめた陥没災害における空洞形成過 程の危険度評価フローを図 25 に示す。欠損発生後,欠損 径と試料の 95%粒形の比から欠損閉塞条件を判定する。 続いて,最大土粒子濃度から空洞の規模を判定する。大 規模空洞発生時には粉体工学の流動境界線の式から緩み 幅を算出できると考えられる。欠損が閉塞したあるいは, 最大土粒子濃度が理論値を下回る場合は Kenny の指標を 用いて内部侵食発生可能性を検討する。内部侵食が発生 すると三日月型空洞が形成され,Terzaghiの緩み土圧理論 から緩み領域を算出できると考えられるが,正確な緩み の元を捉えることが必要である。内部侵食が発生しない と判断されると空洞無しとなる。空洞形成過程のフロー を用いることで,空洞の規模や緩み領域を推測すること ができ,陥没災害の予防保全をすることができると考え られる。

図 23 最大土粒子濃度による空洞規模の評価

図 24 実試料における内部侵食発生安定性の評価

図 25 陥没災害に対する危険度評価フロー

5. まとめ

以下に本研究で得られた知見を示す。

- (1) 欠損近傍の土粒子流出部分では減衰率が増加し地盤 が緩んでいることが確認できた。空洞発生が確認で きた地盤範囲では初期値に比べ,速度低下や減衰率 増加が確認できた。音響トモグラフィ地盤探査手法 を用いることで,地下水位以深の空洞発生や地盤の 緩みの有無を発見できると考える。
- (2) 土粒子の流出に伴う緩み領域の形成は、内部侵食が 発生する場合とそうでない場合の 2 つに区別できる。 内部侵食発生時は、Terzaghiの土圧理論を用いて緩み 幅の推定を行ったが、実測値と予測値に乖離がみら れた。したがって、緩みの元を正確につかみ、その 値をトンネル内径に代入することが必要であると判 明した。内部浸食発生しない場合において、土粒子 の流出挙動は粉体工学のファネルフローに類似して いる。緩み幅の推定は粉体工学の流動境界線の式を 用いると実測値と予測値には 2~3 倍の差がみられ、 外水位条件や経時変化に伴う土粒子の動きに速度差 が発生した。以上のことから、外水位変化に伴う浸 透流の速度増加が緩み幅の増大を促進していると考 えられる。

参考文献

- 小橋朋弥,前田健一,林英璃奈:内水圧が作用する埋設管 渠周辺地盤の内部侵食が陥没発生リスクに及ぼす影響,第 35回中部工学シンポジウム,pp.39-44,2023.08.07
- ・榊原淳一,山本督夫:高周波数の弾性波を用いた高精度地 盤調査手法の開発,土木学会論文集,Vol.65,No.1,pp.97 -106,2009
- シールド工法入門、シールド工法入門編集委員会、社団法 人地盤工学会、1992、261pp
- 4) 三輪茂雄:貯槽における粉粒体の挙動,化学工学,1973, 37巻8号, p763-769
- 5) 三輪茂雄,神田正記:ホッパー内の粉粒体の流動について, 粉体工学研究会誌, 1973, 10巻6号, p324-329
- 6) 土石流·流木対策設計技術指針解説
- 池谷浩、上原信司;スリット砂防ダムの土砂調節効果に関する実験的研究,砂防学会誌第32巻3号,pp.37-44
- 堀内成郎,田畑茂清,小野愼吾,伊藤隆郭,水山高久;格 子型砂防堰堤の格子上方から流出する土砂の制御に関する 実験的研究,砂防学会誌第64巻1号,pp.11-16
- 片出亮,香月智,嶋丈示;巨礫粒径分布の砂防堰堤閉塞確
 率に及ぼす影響,構造工学論文集 A pp.209-220
- 高橋保;土石流発生のメカニズム(2),砂防学会誌,1992 年45巻3号,pp.1-21
- Kenny, T.C., Chahal, R., Chiu, E., Ofoegbu, G.I., Omanege,
 G.N., and Ume, C.A.: Controlling construction sizes of granular filters, Can.Geotech J.22,1985

Prediction of the extent of the loosening area before ground depression

Chika YOSHIDA¹, Kenichi MAEDA², Tomoya KOBASHI³, Junichi SAKAKIBARA⁴

- 1 Nagoya Institute of Technology, Graduate School, Department of Civil Engineering Program
- 2 Nagoya Institute of Technology, Professor, Advanced Disaster Prevention Engineering Center
- 3 Nagoya Institute of Technology, Graduate School, Department of Social Engineering Program
- 4 JFE Civil Engineering & Construction Corp.

Abstract

Ground depression caused by the degradation of buried pipes occur in each place in Japan. It is thought that the number of ground depression increases by the degradation of the underground structures in future, and the preventive maintenance is needed. Previous studies have used Terzaghi's formula to estimate the area of loosening area, but there was a discrepancy between the measured and predicted values in terms of the loosening area. This paper attempts to visualize cavities and loosening area blow the groundwater using the acoustics tomography owned by the JFE Civil Engineering & Construction Corp. In addition, this paper attempt to estimate the loosing area with reference to funnel flow in powder technology. The result of acoustics tomography confirmed the existence of cavities and loosening area based on the decrease in velocity and the increase in attenuation rate. The result of using the flow boundary equation of the powder technology showed that the measured and predicted loosening area have a parallel linear relationship, although there is a difference of 2 to 3 times.

Key words: ground depression, loose, acoustics tomography, infiltration flow