横ずれ断層の非一様な幾何形状がリーデルせん断の形成に及ぼす影響に関する検討 (Study on effects of the non-uniform geometries of strike-slip fault on Ridel shear formation)

岩井周平¹,野田利弘²,豊田智大³

- 1 名古屋大学・iwai.shuhei@d.mbox.nagoya-u.ac.jp
- 2 名古屋大学
- 3 名古屋大学

概 要

地下深部で横ずれ断層が変位すると、その直上に堆積した表層地盤内にフラワー構造が発達し、地表面で はリーデルせん断が生じる。著者らはこれまでに、リーデルせん断の形成過程を三次元弾塑性変形解析に より解き、横ずれ断層上の屈曲部の幾何的な変形場の違いにより性質の異なる断層変位地形が形成される ことを示してきた。本稿では、実断層上のランダム凹凸を模擬した境界条件を設定した解析事例を示す。 ランダムな断層線形状を複数生成して解析を実施したが、いずれのケースにおいてもフラワー構造の発達 起点が「断層線の傾斜が最大となる拘束性屈曲」となることが確認され、断層線のトポグラフィに基づく 断層変位時の変形卓越箇所の推定可能性が示唆された。

キーワード:断層変位地形,横ずれ断層,リーデルせん断,フラワー構造,弾塑性

1. はじめに

地下深部で横ずれ断層が変位すると、その直上に堆積し た表層地盤内に立体的・複合的なすべり面(flower 構造) が発達し、地表面では雁行状のせん断ひずみの局所化 (Riedel せん断)が生じる。断層変位評価や構造物安全性 評価の実施のため、断層変位地形の形成メカニズム解明は

工学的に喫緊の課題である。本来,理学,特に地質学・変 動地形学の分野で扱われる本問題に対し,著者らは計算地 盤力学を援用することで,現象解明に取り組んでいる。

これまで、図1のような規則的な屈曲を有する断層線上 に堆積した表層地盤の変形を三次元弾塑性変形解析によ り解き,屈曲部を起点として生じる flower 構造および地表 面での Riedel せん断の出現形態が屈曲部での幾何的な変 形場(解放性屈曲/拘束性屈曲)により異なることを示し てきた¹⁾。本稿では,実際の断層線が不規則な凹凸を有す ることを踏まえ,模型底面に図2のような非一様な断層線 を与えて解析を行った。

2.では本研究で用いた断層の模型について詳述し,3.で は解析条件を示す。4.では解析の結果得られた,地盤内部 におけるせん断ひずみの発達の様子と地表の変形につい て言及し,先行研究の結果を踏まえた考察を行う。最後に, 5.にまとめを,6.に今後の展望を示す。

図1 規則的な屈曲を有する右横ずれ断層の模型¹⁾

図2 不規則な屈曲を有する右横ずれ断層の模型

2. 不規則な断層線をもつ模型

模型は図2に示すy方向を横ずれ断層(主断層)の走行 方向にとる三次元直方体メッシュ(要素数:32800)であ る。断層線である不規則な曲線を, Fourier 正弦級数として 次式で与える。

$$f(y) = \frac{1}{n} \sum_{k=1}^{n} a_k \sin\left(\frac{k\pi}{L_y}y\right) \tag{1}$$

ただし、f(y)は y 方向(奥行き方向)の断層線形状、 L_y は模型の奥行きである。断層線のランダム性は、式(1)の Fourier 係数 a_k を-0.02~+0.02mの一様乱数として与えるこ とで付加する。この操作により生成可能な無数の不規則な 断層線のうち、本稿では紙幅の都合上、n=10として生成 した図 3 に示す 4 ケースについて検討した結果を示す。

図3 ランダムに生成した模型底面における断層線形状

3. 解析条件

解析には、土の骨格構造に基づく土の弾塑性構成式 SYS Cam-clay model²⁾を搭載した動的/静的~土骨格有限変形解 析コード *GEOASIA*³⁾を用いる。なお、本稿の結果は間隙 水の存在を考慮しない一相系解析によるものである。

3.1 境界条件

模型底面はz方向(鉛直方向)を非拘束とし、右横ずれ 断層の挙動となるよう各節点には中央の断層線を境に逆 向きの強制変位(変位速度 $\dot{\delta} = 10^{-6}$ m/s)を与えている。 また,x-z面は周期境界,y-z面は摩擦なし境界としている。

3.2 材料定数, 初期条件

材料定数の設定は表1に示す,既往の解析事例¹⁾に準拠 するものである。初期状態は簡単のため過圧密のみを考慮 し(構造なし,等方応力状態),一様な間隙比(*e*₀ = 0.57) を与える。このとき材料は超過圧密状態となり,構成式応 答として図 5 のようなピーク強度発現後の顕著な軟化挙 動と塑性膨張を示す。

表 1 SYS Cam-clay モデルの材料定数および初期状態

正規 圧密線の 切片 N	1.7
限界状態定数 M	1.0
圧密指数 $ ilde{\lambda}$	0.015
膨潤指数ĸ	0.0002
ポアソン比v	0.3
土粒子密度 ρ_s	2.65
静止土圧係数K ₀	1.0 (等方)
過圧密の程度1/R ₀	(図4参照)
構造の程度1/R*0	1.0 (上負荷面なし)
正規圧密土化指数 m	2.0
構造劣化指数 a	0.0(劣化なし)
構造劣化指数 $b = c = c_s$	1.0
回転硬化指数b _r	0.0 (異方性なし)
回転硬化限界定数m _b	0.9
異方性の程度ζ ₀	0.0(等方)
間隙比e0	0.57(一様)

図4 過圧密の程度1/R₀の深さ方向の分布

Shear Strain ε_s (%)

4. 解析結果

地表面でのせん断ひずみ分布および地盤内でのせん断 ひずみの等数値面(すべり面)の経時変化をそれぞれ図 6 および図 7 に示す。図 7(a)に示すように,最初は模型底面 の狭い範囲においてせん断ひずみが局所的に発達する。そ の後,(b)~(c)では底面の他の箇所でもせん断ひずみが進展 し,等数値面は z 方向上向きに発達しつつ x, y 方向への 広がりも見せる。最終的には,同図(d)のように,底面で最 初にひずみの局所的増大が見られた箇所のほぼ直上の地 表面に最も早く変形が到達する。紙幅の都合上割愛するが, この傾向は Case 2~4 においても同様である。 次に、図8に各ケースの断層線の形状とその傾き、曲率 のグラフを示す。図3で示した断層4ケースを時計回りに 90°回転させていることに注意されたい。傾きが正となっ ている領域は、断層の右横ずれ変位の累積により伸張を受 けるのに対し(解放性屈曲),負の領域は圧縮を受ける(拘 束性屈曲)。ここで、同図に併記された紫色の帯は、図4(a) のような模型底面において最初にせん断ひずみの局所的 増大が生じた位置を表しているが、全てのケースで傾きが 負で最大となる場所(拘束性屈曲)と一致することがわか る。拘束性屈曲における変形の局所化が開放性屈曲に対し て先行することは、先行研究¹)においても確認されている。

図6 Case1における模型表面のせん断ひずみ分布

図8 Case 別の断層線の形状 f(y) (上段), 断層線の傾き df/dy (中段), 曲率 d^2f/dy^2 (下段)

5. まとめ

ランダムな形状を有する右横ずれ断層上に堆積した表 層地盤の変形を解き,今回試した数値解析ケースにおいて は,ひずみの局所的増大が「断層線の傾きが最大の拘束性 屈曲」において優先的に発生し,そのほぼ直上の地表面に おいて最も早くせん断ひずみが卓越することを示した。こ の事実は,地下の主断層線の形状が特定された際に,その 変位により生じる副次断層の変位がどこで卓越するかを 予測する際の手がかりになり得るのではないかと考えて いる。

6. 今後の展望

今後は、主断層のy方向の純横ずれ変位に正断層/逆断 層的な x, z 方向の相対変位が競合する場合についても検 討することで、断層運動に伴う現象のさらなる理解につな げてゆく。

7. 謝辞

本研究の数値解析は京都大学学術情報メディアセンタ ーのスーパーコンピュータシステムを利用して実施した。 また,科学研究費補助金(基盤研究(A):課題番号17H01289) の助成を受けた。

参考文献

- 1) 豊田智大,野田利弘,山田正太郎,山田翔太,浅岡顕: Riedel せん断帯の形成過程における寸法効果に関する数値シミュレー ション,第53回地盤工学研究発表会,pp.1799-1800, 2018.
- Asaoka, A., et al. : An elasto-plastic description of two distinct volume change mechanisms of soils, S&F, 42(5), pp. 47-57, 2002.
- Noda, T., et al.: Soil-water coupled finite deformation analysis based on a rate-type equation of motion incorporating the SYS Cam-clay model, *S&F*, 48(6), 771-790, 2008.